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Chapter Two 

Complex Numbers 

 

1- Complex Numbers: 

Complex numbers of this chapter, underscoring their wide application in the mathematics 

of the physical sciences. The application of complex numbers to the description of physical 

systems is left the basic tools are use it. 

Although complex numbers occur in many branches of mathematics, they arise most 

directly out of solving polynomial equations. We examine a specific quadratic equation as an 

example. 

Consider the quadratic equation  

𝑧2  − 4𝑧 + 5 = 0 … … … … … (29) 

Equation (29) has two solutions, z1 and z2, such that  

(𝑧 − 𝑧1)(𝑧 − 𝑧2) = 0 … … … … … (30) 

Using the familiar formula for the roots of a quadratic equation, the solutions z1 and z2, 

written in brief as z1,2, are 

𝑧1,2 =  
4 ± √(−4)2  − 4(1 ×  5)

2
 = 2 ± 

√−4

2
… … … … … (31) 

Both solutions contain the square root of a negative number. However, it is not true to say 

that there are no solutions to the quadratic equation. The fundamental theorem of algebra states 

that a quadratic equation will always have two solutions and these are in fact given by (31). 

The second term on the RHS of (31) is called an imaginary term since it contains the square 

root of a negative number; the first term is called a real term. The full solution is the sum of a 

real term and an imaginary term and is called a complex number. A plot of the function 𝑓(𝑧) =

 𝑧2  − 4𝑧 + 5 is shown in figure (1). It will be seen that the plot does not intersect the z-axis, 

corresponding to the fact that the equation f(z)=0 has no purely real solutions.  

In our particular example, √−4 = 2√−1 = 2𝑖, and hence the two solutions of (31) are 

𝑧1,2  = 2 ±  𝑖 = 𝑥 ± 𝑖𝑦 … … … … … (32) 

For compactness a complex number is sometimes written in the form  

𝑧1,2 = (𝑥, 𝑦) = (2, ±1) … … … … … (33) 
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Figure (1): The function 𝑓(𝑧) =  𝑧2  − 4𝑧 + 5 

Where the components of z may be thought of as coordinates in an xy-plot. Such a plot is 

called an Argand diagram and is a common representation of complex numbers; an example 

is shown in figure (2). 

 

 

Figure (2): The Argand diagram. 
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1-1 Addition and subtraction: 

The addition of two complex numbers, z1 and z2, in general gives another complex number. 

𝑧1  + 𝑧2  = (𝑥1  + 𝑖𝑦1) + (𝑥2  + 𝑖𝑦2) = (𝑥1  + 𝑥2) + 𝑖(𝑦1  + 𝑦2) … … … … … (34) 

or in component notation 

𝑧1  + 𝑧2  = (𝑥1 , 𝑦1) + (𝑥2 , 𝑦2) = (𝑥1  + 𝑥2, 𝑦1  + 𝑦2) … … … … … (35) 

The Argand representation of the addition of two complex numbers is shown in f igure (3). 

 

Figure (3):  The addition of two complex numbers. 

The subtraction of complex numbers is very similar to their addition. As in the case of real 

numbers, if two identical complex numbers are subtracted then the result is zero. 

 

▶Sum the complex numbers 𝟏 + 𝟐𝒊, 𝟑 − 𝟒𝒊, −𝟐 + 𝒊. 

Summing the real terms we obtain  

𝟏 + 𝟑 − 𝟐 = 𝟐,  

and summing the imaginary terms we obtain 

 𝟐𝒊 − 𝟒𝒊 + 𝒊 =  −𝒊. 

 Hence 

(𝟏 + 𝟐𝒊) + (𝟑 − 𝟒𝒊) + (−𝟐 + 𝒊) = 𝟐 − 𝒊.◀ 
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1-2 Multiplication: 

Complex numbers may be multiplied together and in general give a complex number as 

the result. The product of two complex numbers z1 and z2 is found by multiplying them out in 

full and remembering that i2 = −1, 

𝑧1 𝑧2  = (𝑥1  + 𝑖𝑦1)(𝑥2  + 𝑖𝑦2) = (𝑥1 𝑥2 − 𝑦1𝑦2) + 𝑖(𝑥1𝑦2  + 𝑦1𝑥2) … … … … … (36) 

▶Multiply the complex numbers z1 =3+2i and z2 = −1−4i.  

By direct multiplication we find  

z1z2 =(3+2i)(−1 −4i) =−3−2i−12i−8i2 =5−14i. ◀ 

The multiplication of complex numbers is both commutative and associative, i.e. 

𝑧1 𝑧2 = 𝑧2 𝑧1 … … … … … (37) 

(𝑧1 𝑧2) 𝑧3 = 𝑧1 (𝑧2 𝑧3) … … … … … (38) 

The product of two complex numbers also has the simple properties: 

|𝑧1 𝑧2| = |𝑧1| |𝑧2| … … … … … (39) 

▶Verify that holds for the product of z1 =3+2i and z2 = −1−4i. 

|𝑧1 𝑧2| = |𝟓 − 𝟏𝟒𝒊| = √𝟓𝟐 + 𝟏𝟒𝟐 = √𝟐𝟐𝟏 

We also find and hence  

|𝑧1 | = |𝟑 − 𝟐𝒊| = √𝟑𝟐 + 𝟐𝟐 = √𝟏𝟑 

|𝑧2 | = |−𝟏 − 𝟒𝒊| = √(−𝟏)𝟐 + (−𝟒)𝟐 = √𝟏𝟕 

|𝑧1 ||𝑧2 | = √𝟏𝟑√𝟏𝟕 = √𝟐𝟐𝟏  ◀ 

 

1-3 Complex conjugate 

If z has the convenient form x + iy then the complex conjugate, denoted by z∗, may be 

found simply by changing the sign of the imaginary part, i.e. if  z = x+iy then z∗ = x−iy. More 

generally, we may define the complex conjugate of z as the (complex) number having the 

same magnitude as z that when multiplied by z leaves a real result, i.e. there is no imaginary 

component in the product. 

In the case where z can be written in the form x + iy it is easily verified, by direct 

multiplication of the components, that the product zz∗ gives a real result: 
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 𝑧𝑧∗  = (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 𝑥2  − 𝑖𝑥𝑦 + 𝑖𝑥𝑦 − 𝑖2𝑦2  =  𝑥2  + 𝑦2  =  |𝑧|2 … … … … … (40) 

 Complex conjugation corresponds to a reflection of z in the real axis of the Argand 

diagram, as may be seen in figure (4). 

 

Figure (4) The complex conjugate as a mirror image in the real axis. 

▶Find the complex conjugate of 𝑧 =  𝑎 + 2𝑖 + 3𝑖𝑏. 

 The complex number is written in the standard form 

 𝑧 = 𝑎 + 𝑖(2 + 3𝑏); 

 then, replacing i by −i, we obtain 

𝑧∗  =  𝑎 − 𝑖(2 + 3𝑏). ◀ 

Nevertheless, given two complex numbers, z1 and z2, it is straightforward to show that the 

complex conjugate of their sum (or difference) is equal to the sum (or difference) of their 

complex conjugates, i.e. (z1 ±z2)∗ = z1
∗  ± z2

∗ . Similarly, it may be shown that the complex 

conjugate of the product (or quotient) of z1 and z2 is equal to the product (or quotient) of their 

complex conjugates, i.e. (z1z2)∗ = z1
∗  z2

∗  and (z1/ z2)∗ = z1
∗  / z2

∗. 

▶Find the complex conjugate of the complex number 𝑧 =  𝑤(3𝑦+2𝑖𝑥), where 𝑤 =  𝑥 +

5𝑖. 

In this case w itself contains real and imaginary components and so must be written out in 

full, i.e. 

 𝑧 = 𝑤3𝑦+2𝑖𝑥 = (𝑥 + 5𝑖)3𝑦+2𝑖𝑥 .  

Now we can replace each i by −i to obtain  

𝑧∗  = (𝑥 − 5𝑖) (3y−2ix). 

It can be shown that the product zz∗ is real, as required. ◀ 
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The following properties of the complex conjugate are easily proved and others may be 

derived from them. If 𝑧 =  𝑥 + 𝑖𝑦 then 

(𝑧∗)∗  =  𝑧 … … … … … (41) 

 𝑧 + 𝑧∗  = 2𝑅𝑒𝑧 = 2𝑥 … … … … … (42) 

 𝑧 − 𝑧∗  = 2𝑖 𝐼𝑚𝑧 = 2𝑖𝑦 … … … … … (43) 

 
𝑧

 𝑧 ∗
=  (

𝑥2 − 𝑦2

𝑥2  + 𝑦2
)  + 𝑖 (

2𝑥𝑦

𝑥2  + 𝑦2
) … … … … … (44) 

1-4 Division 

The division of two complex numbers z1 and z2 bears some similarity to their 

multiplication. Writing the quotient in component form we obtain 

𝑧1

𝑧2
  =  

𝑥1  + 𝑖𝑦1

𝑥2  + 𝑖𝑦2
 … … … … … (45) 

 

In order to separate the real and imaginary components of the quotient, we multiply both 

numerator and denominator by the complex conjugate of the denominator. By definition, this 

process will leave the denominator as a real quantity. Equation (45) gives 

𝑧1

𝑧2
  =  

(𝑥1  + 𝑖𝑦1) (𝑥2 − 𝑖𝑦2)

(𝑥2  + 𝑖𝑦2)(𝑥2 − 𝑖𝑦2)
=

(𝑥1𝑥2  + 𝑦1𝑦2)

𝑥2
2  + 𝑦2

2 + 𝑖
(𝑥2𝑦1 − 𝑥1𝑦2)

𝑥2
2  + 𝑦2

2   

Hence we have separated the quotient into real and imaginary components, as required.  

In the special case where z2 = z1
∗, so that x2 = x1 and y2 = −y1, the general result reduces to 

(44). 

▶Express z in the form 𝑥 + 𝑖𝑦, when 𝑧 =  
3−2𝑖

−1+4𝑖
  .  

Multiplying numerator and denominator by the complex conjugate of the denominator we 

obtain 

𝑧 =  
(3 − 2𝑖)(−1 − 4𝑖)

(−1 + 4𝑖)(−1 − 4𝑖)
  

=
 −11 − 10𝑖

17
  

=
−11 

17
 − 

10

17
 𝑖.◀ 



7 
 

In analogy to (39), which describe the multiplication of two complex numbers, the 

following relations apply to division: 

|
𝑧1

𝑧2
 | =  

|𝑧1|

|𝑧2|
… … … … … (46)  

1-5 Modulus and argument: 

The modulus of the complex number z is denoted by |z| and is defined as 

|𝑧| =  √𝑥2 + 𝑦2 … … … … … (47) 

Hence the modulus of the complex number is the distance of the corresponding point from 

the origin in the Argand diagram, as may be seen in figure (5). The argument of the complex 

number z is denoted by arg z and is defined as: 

 𝑎𝑟𝑔 𝑧 = 𝑡𝑎𝑛−1
 𝑦

𝑥
 … … … … … (48) 

It can be seen that arg z is the angle that the line joining the origin to z on the Argand 

diagram makes with the positive x-axis. 

 

Figure (5): The modulus and argument of a complex number. 

The anticlockwise direction is taken to be positive by convention. The angle arg z is shown 

in figure (5). Account must be taken of the signs of x and y individually in determining in 

which quadrant arg z lies. Thus, for example, if x and y are both negative then arg z lies in the 

range −𝜋 <  𝑎𝑟𝑔 𝑧 < −
𝜋

2
  rather than in the first quadrant (0 <  𝑎𝑟𝑔 𝑧 <

𝜋

2
), though both 

cases give the same value for the ratio of y to x. 

▶Find the modulus and the argument of the complex number 𝑧 = 2 − 3𝑖. 

The modulus is given by 

 |𝑧|  =  √22 + (−3)2  =  √13  
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The argument is given by 

 𝑎𝑟𝑔 𝑧 = 𝑡𝑎𝑛−1 
−3

2
 

The two angles whose tangents equal −1.5 are −0.9828 rad and 2.1588 rad. Since x =2 and 

y =−3, z clearly lies in the fourth quadrant; therefore arg z = −0.9828 is the appropriate answer. 

◀ 

2- Polar representation of complex numbers 

Although considering a complex number as the sum of a real and an imaginary part is often 

useful, sometimes the polar representation proves easier to manipulate. This makes use of the 

complex exponential function, which is defined by 

𝑒𝑧  = 𝑒𝑥𝑝 𝑧 ≡  1 + 𝑧 + 
𝑧2

2!
  + 

𝑧3

3!
   +···       … … … … … (49) 

We also note that, using (49), by multiplying together the appropriate series we may show 

that 

𝑒𝑧1𝑒𝑧2 = 𝑒𝑧1+𝑧2 … … … … … (50) 

From (49), it immediately follows that for z = iθ, θ real, 

𝑒𝑖𝜃  =  1 + 𝑖𝜃 − 
𝜃2

2!
 −  

𝑖𝜃3

3!
   +

𝜃4

4!
+ ···       … … … … … (51) 

𝑒𝑖𝜃  =  (1 − 
𝜃2

2!
 +

𝜃4

4!
− ⋯ ) + 𝑖 (𝜃 − 

𝜃3

3!
   +

𝜃5

5!
− ···)      … … … … … (52) 

and hence that 

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 … … … … … (53) 

This last relationship is called Euler’s equation. It also follows from (53) that 

𝑒𝑖𝑛𝜃 = cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃 

For all n. From Euler’s equation (53) and figure (6) we deduce that 

𝑟𝑒𝑖𝜃  =  𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

= 𝑥 + 𝑖𝑦. 

Thus a complex number may be represented in the polar form 

𝑧 =  𝑟𝑒𝑖𝜃 … … … … … (54) 
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Figure (6): The polar representation of a complex number. 

Referring again to figure (6), we can identify r with |z| and θ with arg z. The simplicity of 

the representation of the modulus and argument is one of the main reasons for using the polar 

representation. 

▶ Write  𝑧 = −1 − 𝑖 in the polar form. 

Now 𝑥 = −1, 𝑦 = −1 

The modulus is: 

𝑟 = |𝑧| =  √(−1)2 + (−1)2 =  √2 

The argment is: 

𝜃 = 𝑎𝑟𝑔 𝑧 = 𝑡𝑎𝑛−1 
−1

−1
=

5𝜋

4
 𝑜𝑟 225𝑜 

Its principle value is 𝜃 = −
3𝜋

4
 

Hence 𝑧 = (√2 , −
3𝜋

4
 ) in the polar form. ◀ 

 

2-1 Multiplication and division in polar form: 

 

Multiplication and division in polar form are particularly simple. The product of 𝑧1  =

 𝑟1𝑒𝑖𝜃1 and  𝑧2  =  𝑟2𝑒𝑖𝜃2is given by 

𝑧1 𝑧2 =  𝑟1𝑒𝑖𝜃1𝑟2𝑒𝑖𝜃2 

𝑧1 𝑧2 =  𝑟1𝑟2𝑒𝑖(𝜃1+𝜃2) … … … … … (55) 
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The relations|𝑧1 𝑧2| = |𝑧1| |𝑧2| and 𝑎𝑟𝑔(𝑧1 𝑧2)  =  𝑎𝑟𝑔 𝑧1  + 𝑎𝑟𝑔 𝑧2 follow immediately. 

An example of the multiplication of two complex numbers is shown in figure (7). 

 

Figure (7): The multiplication of two complex numbers. In this case r1 and r2 are both 

greater than unity. 

Division is equally simple in polar form; the quotient of z1 and z2 is given by: 

𝑧1

𝑧2
  =

𝑟1𝑒𝑖𝜃1

𝑟2𝑒𝑖𝜃2
=

𝑟1

𝑟2
 𝑒𝑖(𝜃1−𝜃2) … … … … … (56)  

The relations|𝑧1/ 𝑧2| = |𝑧1| / |𝑧2| and 𝑎𝑟𝑔(𝑧1/ 𝑧2) =  𝑎𝑟𝑔 𝑧1 − 𝑎𝑟𝑔 𝑧2 are again 

immediately apparent. The division of two complex numbers in polar form is shown in figure 

(8). 

 

Figure (8): The division of two complex numbers. As in the previous figure, r1 and r2 are 

both greater than unity. 
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3- Roots of complex Numbers: 

Consider now a point z = reiθ, lying on a circle centered at the origin with radius r. As θ is 

increased, z moves around the circle in the counterclockwise direction. In particular, when θ 

is increased by 2π, we arrive at the original point; and the same is true when θ is decreased by 

2π. It is, therefore, evident from Fig. (9) that two nonzero complex numbers: 

𝑧1  =  𝑟1𝑒𝑖𝜃1   𝑎𝑛𝑑  𝑧2  =  𝑟2𝑒𝑖𝜃2 

 

Figure (9) A point z = reiθ. 

are equal if and only if 

𝑟1 = 𝑟2   𝑎𝑛𝑑  𝜃1 = (𝜃2 + 2𝑛𝜋)  

where k is any integer (k=0,±1,±2,...). 

This observation, together with the expression zn=rneinθ, is useful in finding the nth roots 

of any nonzero complex number 𝑧0 = 𝑟0𝑒𝑖𝜃0, where n has one of the values n=2,3,... .The 

method starts with the fact that an nth root of z0 is a nonzero number z=r eiθ such that zn=z0, 

or  

𝑟𝑛𝑒𝑖𝑛𝜃 = 𝑟0𝑒𝑖𝜃0 … … … … … (57) 

 

According to the statement in italics just above, then, 

𝑟𝑛 = 𝑟0    𝑎𝑛𝑑   𝑛𝜃 = 𝜃0 + 2𝑘𝜋 … … … … … (58) 
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So 𝑟 = √𝑟0
𝑛 , where this radical denotes the unique positive nth root of the positive real 

number r0, and  

𝜃 =
𝜃0 + 2𝑘𝜋

𝑛
  =

𝜃0

𝑛
+

2𝑘𝜋

𝑛
              (k = 0, ±1, ±2, . . . ) … … … … … (59) 

Consequently, the complex numbers 

 

𝑧 = √𝑟0
𝑛  𝑒𝑥𝑝 [𝑖 (

𝜃0

𝑛
+

2𝑘𝜋

𝑛
)]              (k = 0, ±1, ±2, . . . ) … … … … … (60) 

We are able to see immediately from this exponential form of the roots that they all lie on 

the circle |𝑧| = √𝑟0
𝑛

 about the origin and are equally spaced every 2π/n radians, starting with 

argument θ0/n. 

▶Let us find all four values of (−16)1/4, or all of the fourth roots of the number −16. 

One need only write 

𝑧4 = −16 

𝑟0 = √(−16)2 + 0 = 16 

𝜃0 = tan−1
0

−16
= 𝜋 

 

∵ 𝑧4 = 𝑟4𝑒𝑖4𝜃 = 𝑟0𝑒𝑖𝜃0 

∴ 𝑟4 = 𝑟0 = 16    𝑎𝑛𝑑   4𝜃 = 𝜋 + 2𝑘𝜋 

∴ 𝑧 = √16
4

 𝑒𝑥𝑝 [𝑖 (
𝜋

4
+

𝑘𝜋

2
)]      (k = 0,1,2,3)          

𝑧1 = 2 𝑒𝑥𝑝 [𝑖 (
𝜋

4
)] = 2 (

1

√2
+

𝑖

√2
) = √2(1 + 𝑖) 

𝑧2 = 2 𝑒𝑥𝑝 [𝑖 (
𝜋

4
+

𝜋

2
)] = 2 𝑒𝑥𝑝 [𝑖 (

3𝜋

4
)] = 2 (

−1

√2
+

𝑖

√2
) = √2(−1 + 𝑖) 

 

𝑧3 = 2 𝑒𝑥𝑝 [𝑖 (
𝜋

4
+ 𝜋)] = 2 𝑒𝑥𝑝 [𝑖 (

5𝜋

4
)] = 2 (

−1

√2
−

𝑖

√2
) = −√2(1 + 𝑖) 
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𝑧4 = 2 𝑒𝑥𝑝 [𝑖 (
𝜋

4
+

3𝜋

2
)] = 2 𝑒𝑥𝑝 [𝑖 (

7𝜋

4
)] = 2 (

1

√2
−

𝑖

√2
) = √2(1 − 𝑖) ◀ 

 

 

 

 

 

 

 

 

 

 

 

▶Let a denote any positive real number. In order to find the two square roots of 𝑎 + 𝑖. 

𝑧2 = 𝑎 + 𝑖 

𝑟0 = √(𝑎)2 + 12 = (𝑎2 + 1)1 2⁄  

𝜃0 = tan−1
1

𝑎
= 𝛽 

 

∵ 𝑧2 = 𝑟2𝑒𝑖2𝜃 = 𝑟0𝑒𝑖𝜃0 

∴ 𝑟2 = 𝑟0 = (𝑎2 + 1)1 2⁄     𝑎𝑛𝑑   2𝜃 = 𝛽 + 2𝑘𝜋 

∴ 𝑧 = √(𝑎2 + 1)1 2⁄  𝑒𝑥𝑝 [𝑖 (
𝛽

2
+ 𝑘𝜋)]      (k = 0,1)          

𝑧1 = (𝑎2 + 1)1 4⁄  𝑒𝑥𝑝 [𝑖 (
𝛽

2
)] 

𝑧2 = (𝑎2 + 1)1 4⁄  𝑒𝑥𝑝 [𝑖 (
𝛽

2
+ 𝜋)] = (𝑎2 + 1)1 4⁄  𝑒𝑥𝑝 [𝑖 (

𝛽

2
+ 𝜋)] = −𝑧1◀ 

 

 

z1 z2 

z4 z3 

Rez 

Imz 
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4- de Moivre’s theorem: 

We now derive an extremely important theorem. Since (𝑒𝑖𝜃)𝑛  =  𝑒𝑖𝑛𝜃, we have 

 (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)𝑛  = 𝑐𝑜𝑠 𝑛𝜃 + 𝑖 𝑠𝑖𝑛𝑛𝜃 … … … … … (61) 

where the identity einθ =cosnθ + isinnθ follows from the series definition of einθ. This result 

is called de Moivre’s theorem and is often used in the manipulation of complex numbers. The 

theorem is valid for all n whether real, imaginary or complex.  

There are numerous applications of de Moivre’s theorem but this section examines just 

three: proofs of trigonometric identities; finding the nth roots of unity; and solving polynomial 

equations with complex roots. 

 

3.1 Trigonometric identities: 

The use of de Moivre’s theorem in finding trigonometric identities is best illustrated by 

example. We consider the expression of a multiple-angle function in terms of a polynomial in 

the single-angle function, and its converse. 

▶Express sin3θ and cos3θ in terms of powers of cosθ and sinθ.  

Using de Moivre’s theorem, 

H.W. Find the square roots of (a)2𝑖 ;(b)1 − √3𝑖 and express them in Argand diagram. 

Rez 

Imz 

z1 

z2=- z1 
(𝑎2 + 1)1 4⁄  
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 𝑐𝑜𝑠3𝜃 + 𝑖𝑠𝑖𝑛3𝜃 = (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)3  

= (𝑐𝑜𝑠3 𝜃 − 3𝑐𝑜𝑠𝜃𝑠𝑖𝑛2𝜃) + 𝑖(3𝑠𝑖𝑛𝜃𝑐𝑜𝑠2 𝜃 − 𝑠𝑖𝑛3 𝜃). 

 We can equate the real and imaginary coefficients separately, i.e. 

𝑐𝑜𝑠3𝜃 = 𝑐𝑜𝑠3 𝜃 − 3𝑐𝑜𝑠𝜃𝑠𝑖𝑛2𝜃 = 4 𝑐𝑜𝑠3 𝜃 − 3𝑐𝑜𝑠𝜃 

and  

𝑠𝑖𝑛3𝜃 = 3𝑠𝑖𝑛𝜃𝑐𝑜𝑠2 𝜃 − 𝑠𝑖𝑛3 𝜃 = 3𝑠𝑖𝑛𝜃 − 4 𝑠𝑖𝑛3 𝜃. ◀ 

 

This method can clearly be applied to finding power expansions of cos nθ and sin nθ for 

any positive integer n. 

The converse process uses the following properties of 𝑧 =  𝑒𝑖𝜃, 

 

 𝑧𝑛 + 
1

𝑧𝑛
  = 2 𝑐𝑜𝑠𝑛𝜃 … … … … … (62) 

 𝑧𝑛 − 
1

𝑧𝑛
  = 2𝑖 𝑠𝑖𝑛𝑛𝜃 … … … … … (63) 

These equalities follow from simple applications of de Moivre’s theorem, i.e. 

𝑧𝑛 + 
1

𝑧𝑛
  = (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)𝑛 + (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)−𝑛 

=  𝑐𝑜𝑠𝑛𝜃 + 𝑖𝑠𝑖𝑛𝑛𝜃 + 𝑐𝑜𝑠 − 𝑛𝜃 + 𝑖𝑠𝑖𝑛 − 𝑛𝜃 

=  𝑐𝑜𝑠𝑛𝜃 + 𝑖𝑠𝑖𝑛𝑛𝜃 + 𝑐𝑜𝑠𝑛𝜃 − 𝑖𝑠𝑖𝑛𝑛𝜃 

                                      = 2 𝑐𝑜𝑠𝑛𝜃 

and 

𝑧𝑛 − 
1

𝑧𝑛
  = (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)𝑛 − (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)−𝑛 

=  𝑐𝑜𝑠𝑛𝜃 + 𝑖𝑠𝑖𝑛𝑛𝜃 − 𝑐𝑜𝑠 − 𝑛𝜃 − 𝑖𝑠𝑖𝑛 − 𝑛𝜃 

=  𝑐𝑜𝑠𝑛𝜃 + 𝑖𝑠𝑖𝑛𝑛𝜃 − 𝑐𝑜𝑠𝑛𝜃 + 𝑖𝑠𝑖𝑛𝑛𝜃 

                                      = 2𝑖 𝑠𝑖𝑛𝑛𝜃 

In the particular case where n =1, 

𝑧 +  
1

𝑧
= 𝑒𝑖𝜃 + 𝑒−𝑖𝜃 = 2 𝑐𝑜𝑠𝜃 … … … … … … (64) 
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𝑧 − 
1

𝑧
= 𝑒𝑖𝜃 − 𝑒−𝑖𝜃 = 2𝑖 𝑠𝑖𝑛𝜃 … … … … … … (65) 

▶Find an expression for cos3 θ in terms of cos3θ and cosθ 

Using (60) 

𝑐𝑜𝑠3 𝜃 =  
1

23
(𝑧 + 

1

𝑧
)

3

 

=  
1

8
(𝑧3 + 3𝑧 +  

3

𝑧
+

1

𝑧3
) 

=  
1

8
(𝑧3 +

1

𝑧3
) +

3

8
(𝑧 + 

1

𝑧
) 

=  
1

8
∗ 2 𝑐𝑜𝑠3𝜃 +

3

8
∗ 2𝑐𝑜𝑠𝜃 

𝑐𝑜𝑠3 𝜃 =  
1

4
𝑐𝑜𝑠3𝜃 +

3

4
𝑐𝑜𝑠𝜃. ◀ 

3-2 Finding the nth roots of unity: 

The equation z2 = 1 has the familiar solutions z = ±1. However, now that we have 

introduced the concept of complex numbers we can solve the general equation zn = 1. 

Recalling the fundamental theorem of algebra, we know that the equation has n solutions. In 

order to proceed we rewrite the equation as 

𝑧𝑛  =  𝑒2𝑖𝑘𝜋 … … … … … (66) 

where k is any integer. Now taking the nth root of each side of the equation we find 

𝑧 = 𝑒2𝑖𝑘𝜋/𝑛 … … … … … (67) 

Hence, the solutions of zn = 1 are 

 𝑧1,2,...,𝑛  = 1,  𝑒2𝑖𝜋/𝑛 , . . . , 𝑒2𝑖(𝑛−1)𝜋/𝑛 … … … … … (68) 

corresponding to the values 0,1,2,...,n− 1 for k. Larger integer values of k do not give new 

solutions, since the roots already listed are simply cyclically repeated for k = n, n+1, n+2, etc. 

▶Find the solutions to the equation z3 =1.  

 By applying the above method we find  

𝑟 = √12 + 02 = 1 

arg 𝑧 = tan−1
0

1
= 0 
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𝑧 = [1,0] 

𝑧3 = [1,0]3 = [1,0] 

𝑧 = 𝑒2𝑖𝑘𝜋/3 

 Hence the three solutions are z1 = e0i =1, z2 = e2iπ/3, z3 = e4iπ/3. We note that, as expected, 

the next solution, for which k =3, gives z4 = e6iπ/3 =1=z1, so that there are only three separate 

solutions. ◀ 

 

Figure (10) The solutions of z3 =1. 

Not surprisingly, given that |z3| = |z|3 from (39), all the roots of unity have unit modulus, 

i.e. they all lie on a circle in the Argand diagram of unit radius. The three roots are shown in 

figure (10). 

3-3 Solving polynomial equations: 

A third application of de Moivre’s theorem is to the solution of polynomial equations. 

Complex equations in the form of a polynomial relationship must first be solved for z in a 

similar fashion to the method for finding the roots of real polynomial equations. Then the 

complex roots of z may be found. 

▶Solve the equation  z6 − z5 + 4z4 − 6z3 + 2z2 − 8z +8 = 0.  

We first factorise to give 

(z3 − 2)(z2 +4)(z − 1) = 0. 

Hence z3 =2 or z2 = −4 or z = 1. The solutions to the quadratic equation are z = ±2i; to find 

the complex cube roots, we first write the equation in the form  

z3 = 2 = 2e2ikπ, 

where k is any integer. If we now take the cube root, we get  
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z =21/3e 2ikπ/3. 

To avoid the duplication of solutions, we use the fact that – 𝜋 < arg 𝑧 < 𝜋 and find 

𝑧1  = 21 3⁄  

𝑧2  = 21 3⁄ 𝑒2𝑖𝜋/3 = 21 3⁄ (−
1

2
+

3

2
𝑖) 

𝑧3  = 21 3⁄ 𝑒−2𝑖𝜋/3 = 21 3⁄ (−
1

2
−

3

2
𝑖) 

The complex numbers z1, z2 and z3, together with z4 =2i, z5 = −2i and z6 =1 are the solutions 

to the original polynomial equation. As expected from the fundamental theorem of algebra, 

we find that the total number of complex roots (six, in this case) is equal to the largest power 

of z in the polynomial. ◀ 

 

5- Function of Complex Number: 
 

Let S be a set of complex numbers. A function f defined on S is a rule that assigns to each 

z in S a complex number w. The number w is called the value of f at z and is denoted by f 

(z), so that w= f(z). The set S is called the domain of definition of f. 

 

Suppose that 𝑢 +  𝑖𝑣 is the value of a function f at 𝑧 =  𝑥 + 𝑖𝑦; that is, 

 

𝑢 + 𝑖𝑣 =  𝑓(𝑥 + 𝑖𝑦) … … … … … (69) 

 

Each of the real numbers u and v depends on the real variables x and y, and it follows that 

f (z) can be expressed in terms of a pair of real-valued functions of the real variables x and 

y: 

 

𝑓 (𝑧)  =  𝑢(𝑥, 𝑦)  + 𝑖𝑣(𝑥, 𝑦) … … … … … (70) 

 

 

If 𝑓(𝑧)  =  𝑧2, then 

𝑓 (𝑥 + 𝑖𝑦)  =  (𝑥 + 𝑖𝑦)2  =  𝑥2  −  𝑦2  + 𝑖2𝑥𝑦. 
 

Hence 

 

𝑢(𝑥, 𝑦) =  𝑥2  −  𝑦2      𝑎𝑛𝑑     𝑣(𝑥, 𝑦) = 2𝑥𝑦 
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If the function v in equation (69) always has value zero, then the value of f is always real. 

Thus f is a real-valued function of a complex variable. 

 

If the polar coordinates r and θ are used instead of x and y, then 

 

𝑢 + 𝑖𝑣 =  𝑓(𝑟𝑒𝑖𝜃) … … … … … (71) 

where 𝑤 =  𝑢 + 𝑖𝑣 and 𝑧 = 𝑟𝑒𝑖𝜃. In that case, we may write  

 

Hence 

 𝑓 (𝑧)  =  𝑢(𝑟, 𝜃) + 𝑖𝑣(𝑟, 𝜃) … … … … … (72) 

 

 

▶ Consider the function 𝑤 =  𝑧2 when 𝑧 = 𝑟𝑒𝑖𝜃. 

 

𝑤 = (𝑟𝑒𝑖𝜃)2  =  𝑟2𝑒𝑖2𝜃  = 𝑟2𝑐𝑜𝑠2𝜃 + 𝑖 𝑟2𝑠𝑖𝑛2𝜃. 

 

Hence 

 

𝑢(𝑟, 𝜃) =  𝑟2𝑐𝑜𝑠2𝜃 𝑎𝑛𝑑 𝑣(𝑟, 𝜃) =   𝑟2𝑠𝑖𝑛2𝜃◀ 

 

▶Write the following function f(z) in the forms 𝑓(𝑧) =  𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 

(𝑎) 𝑓(𝑧) =  𝑧3 + 𝑧 + 1  

(𝑏)𝑓(𝑧) =
1

𝑖 − 𝑧
 

If  

𝑧 = 𝑥 + 𝑖𝑦 

then 

(a) 𝑓 (𝑧) =  (𝑥 + 𝑖𝑦)3 + (𝑥 + 𝑖𝑦) + 1 =  (𝑥 + 𝑖𝑦)(𝑥2 −  𝑦2 + 2𝑖𝑥𝑦) + 𝑥 + 𝑖𝑦 + 1  

=  𝑥3 − 𝑥𝑦2 + 2𝑖𝑥2𝑦 + 𝑖𝑥2𝑦 −  𝑖𝑦3 − 2𝑥𝑦2 + 𝑥 + 𝑖𝑦 + 1  

=  𝑥3 − 3𝑥𝑦2 + 𝑥 + 1 + 𝑖(3𝑥2𝑦 − 𝑦3 + 𝑦) 

𝑢(𝑥, 𝑦) =  𝑥3 − 3𝑥𝑦2 + 𝑥 + 1 𝑎𝑛𝑑 𝑣(𝑥, 𝑦) = 3𝑥2𝑦 − 𝑦3 + 𝑦 

 

(b) 𝑓 (𝑧) =  
1

𝑖−(𝑥+𝑖𝑦)
=

1

−𝑥+𝑖(1−𝑦)
×

−𝑥−𝑖(1−𝑦)

−𝑥−𝑖(1−𝑦)
=

−𝑥−𝑖(1−𝑦)

𝑥2−(1−𝑦)2
=  

−𝑥

𝑥2−(1−𝑦)2
− 𝑖 

(1−𝑦)

𝑥2−(1−𝑦)2
 

H.W. Write the following function f(z) in the forms 𝑓(𝑧)  =  𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 

𝑓(𝑧)  =  (𝑒𝑥𝑝(𝑧2))∗ 
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𝑢(𝑥, 𝑦) =
−𝑥

𝑥2−(1−𝑦)2
 𝑎𝑛𝑑 𝑣(𝑥, 𝑦) =

(1−𝑦)

𝑥2−(1−𝑦)2
◀ 

 

6- Analytic Function: 

Suppose that  𝑓 (𝑧)  =  𝑢(𝑥, 𝑦)  + 𝑖𝑣(𝑥, 𝑦) is analytic in the domain D and suppose that 

the partial derivatives of the component functions u and v are continuous in D also. 

Differentiation of the Cauchy–Riemann equations then gives: 

𝑢𝑥 = 𝑣𝑦 ⟹ 𝑢𝑥𝑥 = 𝑣𝑥𝑦 = 𝑣𝑦𝑥 = −𝑢𝑦𝑦 ⟹  𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 … … … … … (73) 

𝑣𝑥 = −𝑢𝑦 ⟹ 𝑣𝑥𝑥 = −𝑢𝑥𝑦 = −𝑢𝑦𝑥 = −𝑣𝑦𝑦 ⟹  𝑣𝑥𝑥 + 𝑣𝑦𝑦 = 0 … … … … … (74) 

Therefore, both the real and imaginary components of f are harmonic functions that satisfy 

Laplace’s equation. Furthermore, comparing the two- dimensional gradients: 

 

𝛻𝑢 = 𝒊 
𝜕𝑢

𝜕𝑥
+ 𝒋 

𝜕𝑢

𝜕𝑦
= 𝒊 

𝜕𝑣

𝜕𝑦
− 𝒋 

𝜕𝑣

𝜕𝑥
= 𝑛̂  × 𝛻𝑣 … … … … … (75) 

𝛻𝑣 = 𝒊 
𝜕𝑣

𝜕𝑥
+ 𝒋 

𝜕𝑣

𝜕𝑦
= −𝒊 

𝜕𝑢

𝜕𝑦
+ 𝒋 

𝜕𝑢

𝜕𝑥
= 𝑛̂  × 𝛻𝑢 … … … … … (76) 

We find that lines of constant u (level curves) are orthogonal to lines of constant v anywhere 

that 𝑓 ′(𝑧) ≠ 0. 

 

▶ Verify that the following functions 𝑓(𝑧)are analytic fuction. 

(a) 𝑓(𝑧)  =  𝑥2  −  𝑦2  +  𝑖2𝑥𝑦 

(b) 𝑓(𝑧) = 2𝑦 +  𝑖𝑥  
 

 

(a) 𝑓(𝑧)  =  𝑥2  −  𝑦2  +  𝑖2𝑥𝑦 

𝑢𝑥 = 2𝑥,           𝑣𝑦 = 2𝑥, 𝑢𝑥𝑥 = 2,     𝑣𝑥𝑦 = 2,          𝑣𝑦𝑥 = 2, 𝑢𝑦𝑦 = −2 

𝑢𝑦 = −2𝑦,           𝑣𝑥 = 2𝑦,   𝑣𝑥𝑥 = 0,    𝑢𝑥𝑦 = 0,     𝑢𝑦𝑥 = 0,   𝑣𝑦𝑦 = 0    

then 

𝑢𝑥 = 𝑣𝑦    𝑎𝑛𝑑  𝑣𝑥 = −𝑢𝑦 

 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 2 − 2 = 0 

𝑣𝑥𝑥 + 𝑣𝑦𝑦 = 0 + 0 = 0 

 

Hence, 𝑓(𝑧)  is analytic.  
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(b) 𝑓(𝑧) = 2𝑦 +  𝑖𝑥  

𝑢𝑥 = 0,           𝑣𝑦 = 0, 𝑢𝑥𝑥 = 0,     𝑣𝑥𝑦 = 0,          𝑣𝑦𝑥 = 0, 𝑢𝑦𝑦 = 0 

𝑢𝑦 = 2,           𝑣𝑥 = 1,   𝑣𝑥𝑥 = 0,    𝑢𝑥𝑦 = 0,     𝑢𝑦𝑥 = 0,   𝑣𝑦𝑦 = 0 

then 

𝑢𝑥 = 𝑣𝑦    𝑎𝑛𝑑  𝑣𝑥 ≠ −𝑢𝑦 

 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 + 0 = 0 

𝑣𝑥𝑥 + 𝑣𝑦𝑦 = 0 + 0 = 0 

Hence, 𝑓(𝑧)  is not analytic. ◀ 

 

7- HARMONIC FUNCTIONS: 

A real-valued function H of two real variables x and y is said to be harmonic in a given domain 

of the xy plane if, throughout that domain, it has continuous partial derivatives of the first and 

second order and satisfies the partial differential equation: 

𝐻𝑥 𝑥 (𝑥, 𝑦) + 𝐻𝑦 𝑦 (𝑥, 𝑦) =  0 … … … … … … (77) 

known as Laplace’s equation. Harmonic functions play an important role in applied mathematics. 

For example, the temperatures T (x, y) in thin plates lying in the xy plane are often harmonic. A 

function V(x, y) is harmonic when it denotes an electrostatic potential that varies only with x and 

y in the interior of a region of three-dimensional space that is free of charges. 

▶Verify that the following functions u are harmonic: 

(a) 𝑢(𝑥, 𝑦)  =  3𝑥2 𝑦 + 2𝑥2  − 𝑦3  − 2𝑦2 

(b) 𝑢(𝑥, 𝑦) =  𝑙𝑛(𝑥2 + 𝑦2) 

 

 

(a) 𝑢(𝑥, 𝑦)  =  3𝑥2 𝑦 + 2𝑥2  − 𝑦3  − 2𝑦2 

𝑢𝑥 = 6𝑥𝑦 + 4𝑥,           𝑢𝑦 = 3𝑥2 − 3𝑦2 − 4𝑦    

𝑢𝑥𝑥 = 6𝑦 + 4,           𝑢𝑦𝑦 = −6𝑦 − 4    

From eq.(72), then 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 6𝑦 + 4 + (−6𝑦 − 4 ) = 0 
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Hence, u is harmonic.  

(b)  𝑢(𝑥, 𝑦) =  𝑙𝑛(𝑥2 + 𝑦2) 

𝑢𝑥 =
2𝑥

𝑥2 + 𝑦2
,           𝑢𝑦 =

2𝑦

𝑥2 + 𝑦2
   

𝑢𝑥𝑥 =
(𝑥2 + 𝑦2) ∗ 2 − 2𝑥 ∗ 2𝑥

(𝑥2 + 𝑦2)2
=

2(𝑦2 − 𝑥2)

(𝑥2 + 𝑦2)2
,           𝑢𝑦𝑦 =

2(𝑥2 − 𝑦2)

(𝑥2 + 𝑦2)2
   

 

From eq.(72), then 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 =
2(𝑦2 − 𝑥2)

(𝑥2 + 𝑦2)2
+

2(𝑥2 − 𝑦2)

(𝑥2 + 𝑦2)2
= 0 

Hence, u is harmonic. ◀ 

 

▶Verify that the function 𝑇 (𝑥, 𝑦)  =  𝑒−𝑦 𝑠𝑖𝑛 𝑥 is harmonic in any domain of the 𝑥𝑦 plane. 

𝑇𝑥 = 𝑒−𝑦 𝑐𝑜𝑠 𝑥,           𝑇𝑦 = −𝑒−𝑦 𝑠𝑖𝑛 𝑥    

𝑇𝑥𝑥 = −𝑒−𝑦 𝑠𝑖𝑛 𝑥,           𝑇𝑦𝑦 = 𝑒−𝑦 𝑠𝑖𝑛 𝑥    

From eq.(72), then 

𝑇𝑥𝑥 + 𝑇𝑦𝑦 = −𝑒−𝑦 𝑠𝑖𝑛 𝑥 + 𝑒−𝑦 𝑠𝑖𝑛 𝑥 = 0 

Hence, T is harmonic. ◀ 

We now illustrate one method of obtaining a harmonic conjugate of a given harmonic function. 

The function is: 

𝑢(𝑥, 𝑦)  =  𝑦3  − 3𝑥2𝑦 

is readily seen to be harmonic throughout the entire xy plane. Since a harmonic conjugate 

𝑣(𝑥, 𝑦) is related to 𝑢(𝑥, 𝑦) by means of the Cauchy – Riemaan equations 

Theorem. If a function 𝑓 (𝑧)  =  𝑢(𝑥, 𝑦)  +  𝑖𝑣(𝑥, 𝑦) is analytic in a domain D, then its 

component functions u and v are harmonic in D. 

 

H.W. Verify that the function 𝑇 (𝑥, 𝑦) =  𝑒−𝑦 𝑠𝑖𝑛 𝑥 − 𝑖𝑒−𝑦 𝑐𝑜𝑠 𝑥  is harmonic in any domain 

of the 𝑥𝑦 plane. 
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𝑢𝑥 = 𝑣𝑦 , 𝑢𝑦 = −𝑣𝑥 

The first of these equations tells us that 

𝑣𝑦(𝑥, 𝑦) = −6𝑥𝑦 

Holding x fixed and integrating each side here with respect to y, we find that 

𝑣(𝑥, 𝑦) = −3𝑥𝑦2 + 𝜙(𝑥) 

where 𝜙 is, at present an arbitray function of x. Using the second of equations 

3𝑦2  − 3𝑥2 = 3𝑦2 − 𝜙́(𝑥) 

𝜙́(𝑥) = 3𝑥2 

Thus 

𝜙(𝑥) = 𝑥3 + 𝐶 

Where C is an arbitrary real number. According to above equation then, the function: 

  

𝑣(𝑥, 𝑦) = −3𝑥𝑦2 + 𝑥3 + 𝐶 

8- Complex integrals: 
Corresponding to integration with respect to a real variable, it is possible to define 

integration with respect to a complex variable between two complex limits. If a complex 

function f(z) is single-valued and continuous in some region R in the complex plane, then 

we can define the complex integral of f(z) between two points A and B along some curve 

in R; its value will depend, in general, upon the path taken between A and B.  

Let a particular path C be described by a continuous (real) parameter t (α ≤ t ≤ β) 

that gives successive positions on C by means of the equations 

𝑥 =  𝑥(𝑡),   𝑦 =  𝑦(𝑡) … … … … … (78) 

with t = α and t = β corresponding to the points A and B, respectively. Then the integral 

along path C of a continuous function f(z) is written: 

∫ 𝑓(𝑧) 𝑑𝑧 … … … … … (79) 

 and can be given explicitly as a sum of real integrals as follows: 

∫  𝑓(𝑧) 𝑑𝑧   =  ∫(𝑢 +  𝑖𝑣)(𝑑𝑥 +  𝑖𝑑𝑦)  =  ∫  𝑢 𝑑𝑥  −   ∫ 𝑣 𝑑𝑦  +  𝑖 ∫  𝑢 𝑑𝑦  +  𝑖 ∫  𝑣 𝑑𝑥  

=  ∫ 𝑢
 𝛽

𝛼

𝑑𝑥

𝑑𝑡
  𝑑𝑡 −   ∫ 𝑣 

𝑑𝑦

𝑑𝑡
  𝑑𝑡

 𝛽

𝛼

 +  𝑖 ∫ 𝑢
𝑑𝑦

𝑑𝑡
  𝑑𝑡

 𝛽

𝛼

 +  𝑖 ∫ 𝑣 
𝑑𝑥

𝑑𝑡
  𝑑𝑡

 𝛽

𝛼

 … … … … … (80) 
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▶ Evaluate the complex integral of f(z) = z−1 along the circle |z| = R, starting and finishing at z 

= R. 

The path C1 is parameterized as follows: 

𝑧(𝑡) =  𝑅 𝑐𝑜𝑠 𝑡 +  𝑖𝑅 𝑠𝑖𝑛 𝑡        0 ≤ 𝑡 ≤ 2𝜋 

whilst f(z) is given by: 

𝑓(𝑧)  =  
1 

𝑥 +  𝑖𝑦
 =

 𝑥 −  𝑖𝑦

𝑥2 + 𝑦2
   

Thus the real and imaginary parts of f(z) are: 

𝑢 =  
𝑥

𝑥2 + 𝑦2
 =  

𝑅 𝑐𝑜𝑠 𝑡

𝑅2
       𝑎𝑛𝑑       𝑣 =  

−𝑦

𝑥2 + 𝑦2
  =  

−𝑅 𝑠𝑖𝑛 𝑡

𝑅2
  

Hence, using expression (79) 

∫  
1

𝑧
 𝑑𝑧 = ∫

𝑅 𝑐𝑜𝑠 𝑡

𝑅2

 2𝜋

0

(−𝑅 𝑠𝑖𝑛 𝑡)  𝑑𝑡 − 𝑖 ∫
−𝑅 𝑠𝑖𝑛 𝑡

𝑅2

 2𝜋

0

(𝑅 𝑐𝑜𝑠 𝑡)  𝑑𝑡 + 𝑖 ∫
𝑅 𝑐𝑜𝑠 𝑡

𝑅2

 2𝜋

0

(𝑅 𝑐𝑜𝑠 𝑡)  𝑑𝑡

+ ∫
−𝑅 𝑠𝑖𝑛 𝑡

𝑅2

 2𝜋

0

(−𝑅 𝑠𝑖𝑛 𝑡)  𝑑𝑡 

∫  
1

𝑧
 𝑑𝑧 = 0 + 0 + 𝑖𝜋 + 𝑖𝜋 = 𝑖2𝜋◀ 

With a bit of experience, the reader may be able to evaluate integrals directly without having to 

write them as four separate real integrals. In the present case, 

∫  
1

𝑧
 𝑑𝑧 = ∫

−𝑅 𝑠𝑖𝑛 𝑡 +  𝑖𝑅 𝑐𝑜𝑠 𝑡        

𝑅 𝑐𝑜𝑠 𝑡 +  𝑖𝑅 𝑠𝑖𝑛 𝑡

 2𝜋

0

  𝑑𝑡 = ∫ 𝑖
 2𝜋

0

  𝑑𝑡 = 2𝜋𝑖 

▶Evaluate the complex integral of f(z) = Re z along the paths 0 ≤ 𝑡 ≤ 2𝜋 and 0 ≤ 𝑡 ≤ 𝜋 

 

∫ 𝑅𝑒𝑧 𝑑𝑧 = ∫ 𝑅 𝑐𝑜𝑠 𝑡
 2𝜋

0

(−𝑅 𝑠𝑖𝑛 𝑡 + 𝑖𝑅 cos 𝑡)  𝑑𝑡 = 𝑖𝜋𝑅2 

 

∫ 𝑅𝑒𝑧 𝑑𝑧 = ∫ 𝑅 𝑐𝑜𝑠 𝑡
 𝜋

0
(−𝑅 𝑠𝑖𝑛 𝑡 + 𝑖𝑅 cos 𝑡)  𝑑𝑡 =

1

2
𝑖𝜋𝑅2◀ 
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▶Evaluate the following integral: 

∫ (𝑡2 + 𝑖)2𝑑𝑡
2

1

 

∫ (𝑡2 + 𝑖)2𝑑𝑡
2

1
= ∫ (𝑡4 + 2𝑖𝑡2 + 𝑖2)𝑑𝑡

2

1
=

𝑡5

5
+ 2𝑖

𝑡3

3
− 𝑡|

1

2

=
31

5
+

14

3
𝑖 − 1 =

26

5
+

14

3
𝑖◀ 

 

9- Cauchy’s theorem and integral formula 

Cauchy’s theorem states that if f(z) is an analytic function, and 𝑓 ́ (𝑧) is continuous at each point 

within and on a closed contour C, then 

∮ 𝑓(𝑧) 𝑑𝑧 = 0 … … … … … (81) 

We will need the two-dimensional form of the divergence theorem, known as Green’s theorem 

in a plane. This says that if p and q are two functions with continuous first derivatives within and 

on a closed contour C (bounding a domain R) in the xy-plane, then 

∬ (
𝑑𝑝

𝑑𝑥
+

𝑑𝑞

𝑑𝑦
) 𝑑𝑥 𝑑𝑦 = ∮(𝑝 𝑑𝑦 − 𝑞 𝑑𝑥) … … … … … (82) 

With 𝑓(𝑧)  =  𝑢 +  𝑖𝑣 and 𝑑𝑧 =  𝑑𝑥 +  𝑖 𝑑𝑦, this can be applied to: 

𝐼 = ∮ 𝑓(𝑧) 𝑑𝑧 = ∮(𝑢 𝑑𝑥 − 𝑣 𝑑𝑦) + 𝑖 ∮(𝑣 𝑑𝑥 + 𝑢 𝑑𝑦) 

To gives: 

∬ (
𝑑(−𝑢)

𝑑𝑦
+

𝑑(−𝑣)

𝑑𝑥
) 𝑑𝑥 𝑑𝑦 + 𝑖 ∬ (

𝑑(−𝑣)

𝑑𝑦
+

𝑑(𝑢)

𝑑𝑥
) 𝑑𝑥 𝑑𝑦 … … … … … (83) 

Now, recalling that f(z) is analytic and therefore that the Cauchy–Riemann relations (73,74) apply, 

we see that each integrand is identically zero and thus I is also zero; this proves Cauchy’s theorem. 

Another very important theorem in the theory of complex variables is Cauchy’s integral formula, 

which states that if f(z) is analytic within and on a closed contour C and z0 is a point within C 

then: 

H.W. Prove the following integral: 

  

∫ 𝑒−2𝑖𝑡𝑑𝑡 =
1

2
−

𝑖

2

𝜋 4⁄

0
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𝑓(𝑧0) =  
1

2𝜋𝑖
 ∮

𝑓(𝑧)

 𝑧 − 𝑧0
  𝑑𝑧 … … … … … (84) 

 

This formula is saying that the value of an analytic function anywhere inside a closed contour is 

uniquely determined by its values on the contour. We then use the fact that any point z on γ is 

given by z = z0 + ρ exp iθ (and so dz = iρ exp iθ dθ). Thus the value of the integral around γ is 

given by: 

𝐼 =   ∮
𝑓(𝑧)

 𝑧 −  𝑧0
  𝑑𝑧 = ∮

𝑓(𝑧0  +  𝜌 𝑒𝑥𝑝 𝑖𝜃 )

 𝜌 𝑒𝑥𝑝 𝑖𝜃 
  𝑖 𝜌 𝑒𝑥𝑝 𝑖𝜃 d𝜃 

 

𝐼 = 𝑖 ∮ 𝑓(𝑧0  +  𝜌 𝑒𝑥𝑝 𝑖𝜃 )    d𝜃 

If the radius of the circle γ is now shrunk to zero, i.e. ρ → 0, then I → 2πif(z0). An extension to Cauchy’s 

integral formula can be made, yielding an integral expression for 𝑓 ́ (𝑧): 

 

𝑓̀(𝑧0) =  
1

2𝜋𝑖
 ∮

𝑓(𝑧)

( 𝑧 −  𝑧0)2
  𝑑𝑧 … … … … … (85) 

 

▶Prove Cauchy’s integral formula for 𝑓 ́ (𝑧) given in (84). 

 

𝑓̀(𝑧0) = lim
ℎ⟶0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)

ℎ
 

 

𝑓̀(𝑧0) = lim
ℎ⟶0

[
1

2𝜋𝑖
∮

𝑓(𝑧)

ℎ
(

1

𝑧 − 𝑧0 − ℎ
−

1

𝑧 − 𝑧0
)  𝑑𝑧] 

 

𝑓̀(𝑧0) = lim
ℎ⟶0

[
1

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧 − 𝑧0 − ℎ)(𝑧 − 𝑧0)
 𝑑𝑧] 

𝑓̀(𝑧0) =
1

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧 − 𝑧0)2
 𝑑𝑧 



27 
 

which establishes result (84) ◀ 

Further, it may be proved by induction that the nth derivative of f(z) is also given by a Cauchy 

integral, 

𝑓𝑛(𝑧0) =
𝑛!

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧 − 𝑧0)𝑛+1
 𝑑𝑧 … … … … … (86) 

▶Let C denote the positively oriented boundary of the square whose sudes lie along the 

lines 𝑥 = ±2 and 𝑦 = ±2. Evaluate each of these integrals. 

(a) ∫
𝑧 𝑑𝑧

𝑧+1
 

 

(b) ∫
cosh 𝑧

𝑧2+𝑧
 𝑑𝑧 

 

(c) ∫
tan(𝑧 2⁄ )

𝑧−
𝜋

2

 𝑑𝑧 

 
(a) By Cauchy Integral Theorem 

∫
𝑧 𝑑𝑧

𝑧+1
= 2𝜋𝑖𝑓(−1) = −2𝜋𝑖◀ 

(b) By Cauchy Integral Theorem 

∫
cosh 𝑧

𝑧2 + 𝑧
 𝑑𝑧 = ∫

cosh 𝑧

𝑧(𝑧 + 1)
𝑑𝑧 

𝑓(𝑧0) =
cosh 𝑧0

(𝑧0 + 1)
|

𝑧0=0

  𝑎𝑛𝑑  
cosh 𝑧0

𝑧0
|

𝑧0=−1

 

 

∫
cosh 𝑧

𝑧2 + 𝑧
 𝑑𝑧 = 2𝜋𝑖

cosh 𝑧

(𝑧 + 1)
|

𝑧0=0

= 2𝜋𝑖 

∫
cosh 𝑧

𝑧2 + 𝑧
 𝑑𝑧 = 2𝜋𝑖

cosh 𝑧

𝑧
|

𝑧0=−1
= −2𝜋𝑖 cosh(−1) 

 

Hence 

∫
cosh 𝑧

𝑧2+𝑧
 𝑑𝑧 = 2𝜋𝑖(1 − 𝑐𝑜𝑠ℎ(−1)) ◀ 

 

(c) ∫
tan(𝑧 2⁄ )

𝑧−
𝜋

2

 𝑑𝑧 = 2𝜋𝑖 𝑡𝑎𝑛 (
𝜋

4
) = 2𝜋𝑖◀ 
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▶ Compute the integral of the following for functions along the curves C1={|𝑧| = 1} 

and C2={|𝑧 − 2| = 1}, both oriented counterclockwise: 

(a) 
1

2𝑧−𝑧2
 

(b) 
sinh 𝑧

(2𝑧−𝑧2)2
 

(a) 

∫
1

2𝑧−𝑧2
𝑑𝑧 = ∫

(2−𝑧)−1

𝑧
𝑑𝑧 = 2𝜋𝑖(2 − 0)−1 = 𝜋𝑖◀ 

 

(b) 

∫
sinh 𝑧

(2𝑧−𝑧2)2
𝑑𝑧 = ∫

(sinh 𝑧)(2−𝑧)−2

𝑧2
𝑑𝑧 = 2𝜋𝑖 ((sinh 𝑧)(2 − 𝑧)−2)

′
|

𝑧=0
=

𝜋𝑖

2
◀ 

 

▶Evaluate    ∫
sin 𝑧

(𝑧+1)7
𝑑𝑧 

Where C is the circle of radius 5, center 0, positively oriented. 

Recall the extension of the Cauchy integral formula: 

𝑓𝑛(𝑧0) =
𝑛!

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧 − 𝑧0)𝑛+1
 𝑑𝑧 

Considering the function  𝑓(𝑧) = sin 𝑧, which is analytic on C, we have 

𝑓6(−1) =
6!

2𝜋𝑖
∮

sin 𝑧

(𝑧 − (−1))
6+1  𝑑𝑧 =

6!

2𝜋𝑖
∫

sin 𝑧

(𝑧 + 1)7
𝑑𝑧 

Since  𝑓6(𝑧) = − sin 𝑧, then 

∫
sin 𝑧

(𝑧 + 1)7
𝑑𝑧 = −

2𝜋𝑖

6!
sin(−1) =

2𝜋 sin (1)

6!
𝑖 

Let C be the circle |𝑧| = 1 oriented counter –clockwise. ◀ 
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10- Taylor and Laurent series: 

We may establish Taylor’s theorem for functions of a complex variable. If f(z) is analytic 

inside and on a circle C of radius R centered on the point z = z0, and z is a point inside C, then 

𝑓(𝑧) =  ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛 

∞

𝑛=0

… … … … … (87) 

The Taylor expansion is valid inside the region of analyticity and, for any particular z0, can be 

shown to be unique. To prove Taylor’s theorem (86), we note that, since f(z) is analytic inside 

and on C, we may use Cauchy’s formula to write f(z) as 

𝑓(𝑧) =  
1

2𝜋𝑖
 ∮

𝑓(𝜁)

 𝜁 −  𝑧
  𝑑𝜁 … … … … … (88) 

where ξ lies on C. Now we may expand the factor (ξ − z) −1 as a geometric series in (z − z0)/(ξ − 

z0) 

1

𝜁 −  𝑧
=

1

𝜁 −  𝑧0
 ∑ (

𝑧 − 𝑧0

𝜁 −  𝑧0
)

𝑛

 

∞

𝑛=0

 

So (87) becomes 

𝑓(𝑧) =  
1

2𝜋𝑖
 ∮

𝑓(𝜁)

 𝜁 −  𝑧0
  ∑ (

𝑧 − 𝑧0

𝜁 −  𝑧0
)

𝑛

 

∞

𝑛=0

𝑑𝜁 

 

𝑓(𝑧) =  
1

2𝜋𝑖
 ∑(𝑧 − 𝑧0)𝑛 

∞

𝑛=0

∮
𝑓(𝜁)

( 𝜁 −  𝑧0)𝑛+1
  𝑑𝜁 

 

𝑓(𝑧) =  
1

2𝜋𝑖
 ∑(𝑧 − 𝑧0)𝑛 

∞

𝑛=0

2𝜋𝑖 𝑓𝑛( 𝑧0)

𝑛!
… … … … … (89) 

where we have used Cauchy’s integral formula (85) for the derivatives of f(z). Cancelling the 

factors of 2πi, we thus establish the result (87) with 𝑎𝑛 =
 𝑓𝑛( 𝑧0)

𝑛!
. 

 𝑓0( 𝑧0) = 𝑓( 𝑧0)       𝑎𝑛𝑑          0! = 1 

The Taylor series is: 
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𝑓(𝑧) = 𝑓( 𝑧0) +
𝑓′( 𝑧0)

1!
(𝑧 −  𝑧0) +

𝑓′′( 𝑧0)

2!
(𝑧 − 𝑧0)2 + … … … … … . (|𝑧 − 𝑧0| < 𝑅𝑜) 

 

Taylor theorem when 𝑧0 = 0, in which case f is assumed to be analytic throughout a disk |𝑧 | <

𝑅𝑜 become a Macalurin series 

𝑓(𝑧) =  ∑  

∞

𝑛=0

 𝑓𝑛(0)

𝑛!
𝑧𝑛                       |𝑧 | < 𝑅𝑜   … … … … … (90)       

▶Since the function 𝑓(𝑧) = 𝑒𝑧 is entire, It has a Maclaurin series representation which is 

valid for all z. 

Here  

𝑓𝑛(𝑧) = 𝑒𝑧 [0,1,2, … … … ]   𝑎𝑛𝑑 𝑓𝑛(0) = 1 [0,1,2, … … … ]    

It follows that 

𝑒𝑧 =  ∑  

∞

𝑛=0

 𝑧𝑛

𝑛!
                       (|𝑧 | < ∞) 

Note that if 𝑧 = 𝑥 + 𝑖0, expansion becomes 

𝑒𝑧 =  ∑  

∞

𝑛=0

 𝑥𝑛

𝑛!
                       (−∞ < |𝑥| < ∞) 

If replace z by 3z on each side of equation and multiply through the resulting equation by 𝑧2 

𝑧2𝑒3𝑧 =  ∑  

∞

𝑛=0

 3𝑛

𝑛!
𝑧𝑛+2     (|𝑧 | < ∞)   

Finally, if we replace n by n-2 here, we have 

𝑧2𝑒3𝑧 =  ∑  ∞
𝑛=2

 3𝑛−2

(𝑛−2)!
𝑧𝑛     (|𝑧 | < ∞)◀ 

▶ Find the Maclaurin series for the function 𝑓(𝑧) = 𝑠𝑖𝑛 𝑧 

One can use expansion and the definition: 

sin 𝑧 =
𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖
 

To give the details. We refer to expansion and write 
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sin 𝑧 =  
1

2𝑖
[∑  

∞

𝑛=0

 (𝑖𝑧)𝑛

𝑛!
 −    

 (−𝑖𝑧)𝑛

𝑛!
 ]  =

1

2𝑖
∑  

∞

𝑛=0

(1 − (−1 )𝑛)    
𝑖𝑛𝑧𝑛

𝑛!
   (|𝑧 | < ∞)             

 

 

If n is even 1 − (−1)𝑛 = 0, 𝑎𝑛𝑑 𝑠𝑜 𝑤𝑒 𝑐𝑎𝑛 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑛 by 2𝑛 + 1 

sin 𝑧 =
1

2𝑖
∑  

∞

𝑛=0

(1 − (−1 )2𝑛+1)    
𝑖2𝑛+1𝑧2𝑛+1

(2𝑛 + 1)!
   (|𝑧 | < ∞) 

sin 𝑧 = ∑  

∞

𝑛=0

    
(−1)𝑛   𝑧2𝑛+1

 (2𝑛 + 1)!
   (|𝑧 | < ∞) 

▶ Another Maclaurin series representation is: 

1

1 − 𝑧
=  ∑  

∞

𝑛=0

 𝑧𝑛        ( |𝑧|   < 1) 

Since the derivative of the function f(z)=1/(1-z), which fails to be analytic at z=1, are 

𝑓𝑛(𝑧) =
𝑛!

(1 − 𝑧)𝑛+1
           (𝑛 = 0,1,2, … ) 

In particular 𝑓𝑛(0) = 𝑛!  (𝑛 = 0,1,2, … ). Note that expansion gives us the sum of an infinite 

geometric series, where z is the common ratio of adjacent terms: 

∵ 𝑓(𝑧) =  ∑  

∞

𝑛=0

 𝑓𝑛(0)

𝑛!
𝑧𝑛 

1

1 − 𝑧
=  ∑  

∞

𝑛=0

 𝑓𝑛(0)

𝑛!
𝑧𝑛 = ∑  

∞

𝑛=0

 𝑧𝑛         

1 + 𝑧 + 𝑧2 + 𝑧3 + ⋯ =
1

1 − 𝑧
      ( |𝑧|   < 1) 

If we substitute –z for z in equation above and its condition of validity, and note that |𝑧|   < 1 

when |−𝑧|   < 1, we see that: 

1

1 + 𝑧
= ∑  

∞

𝑛=0

 (−1)𝑛 𝑧𝑛         
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If , on the other hand, we replace the variable z in equation above by 1-z, we have the Taylor 

series representation: 

1

𝑧
= ∑  

∞

𝑛=0

 (−1)𝑛 (𝑧 − 1)𝑛             ( |𝑧 − 1|   < 1)      

This condition of validity follows from the one associated with expansion above since |1 − 𝑧|   <

1 is the same as |𝑧 − 1|   < 1. 

 

 

▶ Find the Taylor series of the following functions and their radius of convergence: 

(a) 𝑧 𝑠𝑖𝑛ℎ(𝑧2)         𝑎𝑡  𝑧 = 0 

(b) 𝑒𝑧                        𝑎𝑡  𝑧 = 2 

 

(a) 𝑧 𝑠𝑖𝑛ℎ(𝑧2)  

Since 𝑒𝑧 =  ∑  ∞
𝑛=0

 𝑧𝑛

𝑛!
 

𝑧 𝑠𝑖𝑛ℎ(𝑧2) = 𝑧 (
𝑒𝑧2

− 𝑒−𝑧2

2
) 

𝑧 𝑠𝑖𝑛ℎ(𝑧2) =
𝑧

2
(∑  

∞

𝑛=0

 𝑧2𝑛

𝑛!
− ∑  

∞

𝑛=0

(−1)𝑛
 𝑧2𝑛

𝑛!
) 

𝑧 𝑠𝑖𝑛ℎ(𝑧2) =
1

2
(∑(1 − (−1)𝑛) 

∞

𝑛=0

 𝑧2𝑛+1

𝑛!
) 

If   n=0,2,4,6,….         𝑧 𝑠𝑖𝑛ℎ(𝑧2) = 0 

H.W. Prove the following series: 

cos 𝑧 = ∑  

∞

𝑛=0

    
(−1)𝑛   𝑧2𝑛

 (2𝑛)!
   (|𝑧 | < ∞) 

and  

sinh 𝑧 = ∑  

∞

𝑛=0

    
   𝑧2𝑛+1

 (2𝑛 + 1)!
   (|𝑧 | < ∞) 
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Or    n=1,3,5,7,….              𝑧 𝑠𝑖𝑛ℎ(𝑧2) = ∑  ∞
𝑛=1,3,…

 𝑧2𝑛+1

𝑛!
 

∴ 𝑛 = 2𝑚 + 1 

𝑧 𝑠𝑖𝑛ℎ(𝑧2) = ∑  

∞

𝑚=0

 𝑧4𝑚+3

(2𝑚 + 1)!
 

Since f(z) is entire, the radius of convergence is ∞. 

(b)  𝑒𝑧 

Let  z=w+2 and w=z-2 

𝑒𝑧 = 𝑒𝑤+2 = 𝑒2 𝑒𝑤 = 𝑒2 ∑  

∞

𝑛=0

 𝑤𝑛

𝑛!
= 𝑒2 ∑  

∞

𝑛=0

 (𝑧 − 2)𝑛

𝑛!
 

Since f(z) is entire, the radius of convergence is ∞.◀ 

If a function f fails to be analytic at a point zo, one cannot apply Taylor’s theorem at that point. It 

is often possible, however, to find a series representation for f(z) involving both positive and 

negative powers of z-zo. We now present the theory of such representation, and we begin with 

Laurent’s theorem. 

Suppose that a function  f(z) is analytic throughout an annular domain 𝑅1 < |𝑧 − 𝑧𝑜| < 𝑅2, 

centered on the point z0, and let C denote any positively oriented simple closed contour around  

and lying in the domain. Then each point in the domain, f(z) has the series representation,  

𝑓(𝑧) =  ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛 

∞

𝑛=0

+ ∑
𝑏𝑛

(𝑧 − 𝑧0)𝑛
 

∞

𝑛=1

… … … … … (91)     (𝑅1 < |𝑧 − 𝑧𝑜| < 𝑅2) 

 

𝑎𝑛 =  
1

2𝜋𝑖
 ∮

𝑓(𝑧)

 (𝑧 − 𝑧𝑜)𝑛+1
  𝑑𝑧 … … … … … (92)   (𝑛 = 0,1,2, … ) 

𝑏𝑛 =  
1

2𝜋𝑖
 ∮

𝑓(𝑧)

 (𝑧 − 𝑧𝑜)−𝑛+1
  𝑑𝑧 … … … … … (93)   (𝑛 = 1,2, … ) 

Note how replacing n by –n in the second series in representation (91) enables us to write that 

series as: 

∑
𝑏−𝑛

(𝑧 − 𝑧0)−𝑛
 

−1

𝑛=−∞

 



34 
 

where 

𝑏−𝑛 =  
1

2𝜋𝑖
 ∮

𝑓(𝑧)

 (𝑧 −  𝑧𝑜)𝑛+1
  𝑑𝑧 … … … … … (94)   (𝑛 = −1, −2, … ) 

 

Thus 

𝑓(𝑧) = ∑ 𝑏−𝑛(𝑧 − 𝑧0)𝑛 

−1

𝑛=−∞

+ ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛 

∞

𝑛=0

+ ⋯ … … … … (95)     (𝑅1 < |𝑧 − 𝑧𝑜| < 𝑅2) 

If 

𝑐𝑛 = {
𝑏−𝑛     𝑤ℎ𝑒𝑛     𝑛 ≤ −1
𝑎𝑛        𝑤ℎ𝑒𝑛     𝑛 ≥ 0

} 

 

This becomes 

𝑓(𝑧) = ∑ 𝑐𝑛(𝑧 − 𝑧0)𝑛 

∞

𝑛=−∞

… … … … … (96)     (𝑅1 < |𝑧 − 𝑧𝑜| < 𝑅2) 

 

where 

𝑐𝑛 =  
1

2𝜋𝑖
 ∮

𝑓(𝑧)

 (𝑧 − 𝑧𝑜)𝑛+1
  𝑑𝑧 … … … … … (97)   (𝑛 = 0, ±1, ±2, … ) 

The representation of f(z) is called a Laurent series. Observe that the integrand in expression (93) 

can be written 𝑓(𝑧) (𝑧 − 𝑧𝑜)𝑛−1. Thus it is clear that when f is actually analytic throughout the 

disk |𝑧 − 𝑧𝑜| < 𝑅2, this integrand is too. Hence all of the coefficient 𝑏𝑛 are zero; and  

1

2𝜋𝑖
 ∮

𝑓(𝑧)

 (𝑧 − 𝑧𝑜)𝑛+1
  𝑑𝑧 =

𝑓𝑛(𝑧𝑜)

𝑛!
   (𝑛 = 0,1,2, … ) 

 

Expansion (90) reduces to a Taylor series about zo. 

 

11- A singular point: 
 

A singular point of a complex function f(z) is any point in the Argand diagram at which 

f(z) fails to be analytic. If f(z) has a singular point at z = z0 but is analytic at all points 
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in some neighbourhood containing z0 but no other singularities, then z = z0 is called an 

isolated singularity.  

The most important type of isolated singularity is the pole. If f(z) has the form 

 𝑓(𝑧) =
 𝑔(𝑧)

(𝑧 − 𝑧0)𝑛
… … … … … (98)  

where n is a positive integer, 𝑔(𝑧) is analytic at all points in some neighbourhood 

containing 𝑧 =  𝑧0 and 𝑔(𝑧) ≠ 0, then f(z) has a pole of order n at 𝑧 =  𝑧0. An 

alternative (though equivalent) definition is that: 

lim
𝑧 → 𝑧0

[(𝑧 − 𝑧0)𝑛 𝑓(𝑧)]  =  𝑎 … … … … … (99) 

where 𝑎 is a finite, non-zero complex number. We note that if the above limit is equal 

to zero, then 𝑧 =  𝑧0 is a pole of order less than n, or f(z) is analytic there; if the limit 

is infinite then the pole is of an order greater than n. It may also be shown that if f(z) 

has a pole at 𝑧 =  𝑧0, then |f(z)|→∞ as z → z0 from any direction in the Argand diagram. 

 

▶Find the singularities of the functions: 

 (𝑖)𝑓(𝑧) =
 1

1 − 𝑧
  −  

1

1 + 𝑧 
 ,                (𝑖𝑖) 𝑓(𝑧)  =  𝑡𝑎𝑛ℎ 𝑧. 

 

(i) If we write f(z) as: 

𝑓(𝑧) =
 1

1 −  𝑧
  − 

1

1 +  𝑧 
=

2𝑧

(1 −  𝑧)(1 +  𝑧)
 

we see immediately from either (89) or (90) that f(z) has poles of order 1 (or simple 

poles) at z = 1 and z = −1.  

 

(ii) In this case we write: 

𝑓(𝑧)  =  𝑡𝑎𝑛ℎ 𝑧 =  
𝑠𝑖𝑛ℎ 𝑧

𝑐𝑜𝑠ℎ 𝑧 
 =  

𝑒𝑥𝑝 𝑧 −  𝑒𝑥𝑝(−𝑧)

𝑒𝑥𝑝 𝑧 +  𝑒𝑥𝑝(−𝑧)
  . 

Thus f(z) has a singularity when exp z = − exp(−z) or, equivalently, when 

𝑒𝑥𝑝 𝑧 =  𝑒𝑥𝑝[𝑖(2𝑛 +  1)𝜋] 𝑒𝑥𝑝(−𝑧) 

where n is any integer. Equating the arguments of the exponentials we find 𝑧 =

 (𝑛 + 
1

2
 )𝜋𝑖, for integer n 

 

Furthermore, we have 

lim
𝑧 → (𝑛 + 

1
2

 )𝜋𝑖

{
[𝑧 − (𝑛 + 

1
2

 )𝜋𝑖] sinh 𝑧

cosh 𝑧
} = 1 

Therefore, from (90), each singularity is a simple pole. ◀ 
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▶Show that f(z) = (sin z)/z has a removable singularity at z = 0. 

 

It is clear that f(z) takes the indeterminate form 0/0 at z = 0. However, by expanding 

sin z as a power series in z, we find 

𝑓(𝑧)  =  
1

𝑧
 (  𝑧 − 

𝑧3

3!
  +

𝑧5

5!
 − ··· )  = 1 − 

𝑧2

3!
  +

𝑧4

5!
 − ··· . 

 

Thus lim
z→0 

𝑓(𝑧)   =  1 independently of the way in which z → 0, and so f(z) has a 

removable singularity at z = 0. ◀ 

 

Zeros are classified in a similar way to poles, in that if 

𝑓(𝑧) = (𝑧 − 𝑧0)𝑛  𝑔(𝑧), 
where n is a positive integer and 𝑔(𝑧) ≠ 0, then z = z0 is called a zero of order n of 

f(z). If n = 1 then z = z0 is called a simple zero. It may further be shown that if z = z0 

is a zero of order n of f(z) then it is also a pole of order n of the function 1/f(z). 

 

 

12- The residue theorm: 
 

Having seen from Cauchy’s theorem that the value of an integral round a closed 

contour C is zero if the integrand is analytic inside the contour, it is natural to ask what 

value it takes when the integrand is not analytic inside C. The answer to this is 

contained in the residue theorem, which we now discuss. 

 

Suppose the function f(z) has a pole of order m at the point z = z0, and so can be written 

as a Laurent series about z0 of the form 

 

𝑓(𝑧) = ∑ 𝑐𝑛(𝑧 − 𝑧0)𝑛 

∞

𝑛=−𝑚

 

Now consider the integral I of f(z) around a closed contour C that encloses z = z0, but 

no other singular points. Using Cauchy’s theorem, this integral has the same value as 

the integral around a circle γ of radius ρ centred on z = z0, since f(z) is analytic in the 

region between C and γ. On the circle we have z = z0 + ρ exp iθ (and dz = iρ exp iθ 

dθ), and so 

𝐼 = ∮ 𝑓(𝑧) 𝑑𝑧 

𝐼 = ∑ 𝑐𝑛 

∞

𝑛=−𝑚

∮(𝑧 − 𝑧0)𝑛 𝑑𝑧 
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𝐼 = ∑ 𝑐𝑛 

∞

𝑛=−𝑚

∫ 𝑖 𝜌𝑛+1 𝑒𝑖(𝑛+1)𝜃𝑑𝜃
2𝜋

0

 

 

For every term in the series with 𝑛 ≠  −1, we have 

 

∫ 𝑖 𝜌𝑛+1 𝑒𝑖(𝑛+1)𝜃𝑑𝜃
2𝜋

0

= 0 

 

but for the 𝑛 =  −1 term we obtain 

∫ 𝑖 𝑑𝜃
2𝜋

0

= 2𝜋𝑖 

Therefore only the term in (z − z0) 
−1 contributes to the value of the integral around γ 

(and therefore C), and I takes the value 

𝐼 = ∮ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖𝑐−1 … … … … … (100) 

 

Thus the integral around any closed contour containing a single pole of general order 

m (or, by extension, an essential singularity) is equal to 2πi times the residue of f(z) at 

z = z0. 

If we extend the above argument to the case where f(z) is continuous within and on a 

closed contour C and analytic, except for a finite number of poles, within C, then we 

arrive at the residue theorem 

∮ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖 ∑ 𝑅𝑗

𝑗

… … … … … (101) 

where∑ 𝑅𝑗𝑗  is the sum of the residues of f(z) at its poles within C. 

 

▶ Let 𝑓(𝑧) =
𝑧

𝑧2+1
. Find the poles and residues of 𝑓. 

 

Using partial fractions we write 
 

𝑓(𝑧) =
𝑧

(𝑧 + 𝑖)(𝑧 − 𝑖)
 

The poles are at 𝑧 = ±𝑖. We compute the residues at each pole: 

At 𝑧 = 𝑖 

𝑓(𝑧) =
1

2
 .  

1

(𝑧 − 𝑖)
+ 𝑠𝑜𝑚𝑡ℎ𝑖𝑛𝑔 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑎𝑡 𝑖 

Therefore the pole is simple and 𝑅𝑒𝑠(𝑓, 𝑖) = 1/2. 
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At 𝑧 = −𝑖 
 

𝑓(𝑧) =
1

2
 .  

1

(𝑧 + 𝑖)
+ 𝑠𝑜𝑚𝑡ℎ𝑖𝑛𝑔 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑎𝑡 − 𝑖 

Therefore the pole is simple and 𝑅𝑒𝑠(𝑓, −𝑖) = 1/2. ◀ 
 

▶ Let 𝑓(𝑧) =
2+𝑧+𝑧2

(𝑧−2)(𝑧−3)(𝑧−4)(𝑧−5)
. Show all the poles are simple and compute their 

residues. 

 
The poles are at 𝑧 = 2,3,4,5. They are all isolated. We’ll look at z=2 the others are 

similar. Multiplying by 𝑧 − 2 we get: 

𝑔(𝑧) = (𝑧 − 2)𝑓(𝑧) =
2 + 𝑧 + 𝑧2

(𝑧 − 3)(𝑧 − 4)(𝑧 − 5)
 

This is analytic at 𝑧 = 2  and 

 

𝑔(𝑧) =
8

−6
=  −

4

3
 

So the pole is simple and 𝑅𝑒𝑠(𝑓, 2) = −
4

3
◀ 

 

 


