Chapter Two

Complex Numbers

1- Complex Numbers:

Complex numbers of this chapter, underscoring their wide application in the mathematics
of the physical sciences. The application of complex numbers to the description of physical
systems is left the basic tools are use it.

Although complex numbers occur in many branches of mathematics, they arise most
directly out of solving polynomial equations. We examine a specific quadratic equation as an
example.

Consider the quadratic equation

z2 —4z +5=0...........(29)
Equation (29) has two solutions, z1 and z», such that
(z —2z)(z —2z,)=0...cc... ... ...(30)

Using the familiar formula for the roots of a quadratic equation, the solutions z; and zo,
written in brief as z1», are

4 + J(-4)2 —4(1x 5 V-4
Z1’2 = \/( )2 ( a ) :Zi T (31)

Both solutions contain the square root of a negative number. However, it is not true to say
that there are no solutions to the quadratic equation. The fundamental theorem of algebra states
that a quadratic equation will always have two solutions and these are in fact given by (31).
The second term on the RHS of (31) is called an imaginary term since it contains the square
root of a negative number; the first term is called a real term. The full solution is the sum of a
real term and an imaginary term and is called a complex number. A plot of the function f(z) =
z? — 4z + 5 is shown in figure (1). It will be seen that the plot does not intersect the z-axis,
corresponding to the fact that the equation f(z)=0 has no purely real solutions.

In our particular example, v—4 = 2v/—1 = 2i, and hence the two solutions of (31) are
Zip =2F i=x%iy.n.n..(32)

For compactness a complex number is sometimes written in the form
Z1, = (x,y) = (2,£1) e e ... (33)
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Figure (1): The function f(z) = z? —4z +5

Where the components of z may be thought of as coordinates in an xy-plot. Such a plot is
called an Argand diagram and is a common representation of complex numbers; an example
is shown in figure (2).
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Figure (2): The Argand diagram.

2



1-1 Addition and subtraction:

The addition of two complex numbers, z; and z», in general gives another complex number.
A + Zy = (x1 + 13’1) + (xZ + l'yZ) = (x1 + xZ) + 1(3’1 + yz) (34‘)

or in component notation

7y +2; =0, y1) +(2,52) = (01 +x2,¥1 +Y2) o (35)

The Argand representation of the addition of two complex numbers is shown in f igure (3).

Im:z

Figure (3): The addition of two complex numbers.

The subtraction of complex numbers is very similar to their addition. As in the case of real
numbers, if two identical complex numbers are subtracted then the result is zero.

» Sum the complex numbers 1 + 2i,3 — 4i, -2 + i.
Summing the real terms we obtain
1+3-2=2,
and summing the imaginary terms we obtain
2i —4i+i = —i.
Hence
1+20)+B—-4)+(-2+i)=2—-i4



1-2 Multiplication:

Complex numbers may be multiplied together and in general give a complex number as
the result. The product of two complex numbers z; and z; is found by multiplying them out in
full and remembering that i = — 1/,

212y = (%1 +1y1)(xz +iy2) = (X1 X2 = y1¥2) +i(x1Y2 +Y1%2) v vee e . (36)
» Multiply the complex numbers z; =3+2i and z; = —1—4i.
By direct multiplication we find

2122 =(3+2i)(—1 —4i) =—3—-2i—12i—8i* =5—14i. 4
The multiplication of complex numbers is both commutative and associative, i.e.

Z1 Zy = Zp Z1 wee eun ven een e (37)
(z425) 23 =2, (2, Z3) wev v e e ... (38)
The product of two complex numbers also has the simple properties:
|z1 z,| = |z1] |25 v v e e . (B9)

» Verify that holds for the product of z; =3+2i and z, = —1—4i.
|2, 2,] = |5 — 14| = /52 + 142 =221
We also find and hence
1z, | = |3 — 2i| =/32 + 22 =13
|22 | = -1~ 4i| = (-D)2 + (-4)? =17
11 ||z, | = V13V17 = V221 <«

1-3 Complex conjugate

If z has the convenient form x + iy then the complex conjugate, denoted by z* may be
found simply by changing the sign of the imaginary part, i.e. if z = x+iy then z*=x—iy. More
generally, we may define the complex conjugate of z as the (complex) number having the
same magnitude as z that when multiplied by z leaves a real result, i.e. there is no imaginary
component in the product.

In the case where z can be written in the form x + iy it is easily verified, by direct
multiplication of the components, that the product zz* gives a real result:
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zz* = (x+iy)(x —iy) =x% —ixy +ixy —i’y? = x% +y% = |z|? e v o . (40)

Complex conjugation corresponds to a reflection of z in the real axis of the Argand
diagram, as may be seen in figure (4).

[ z=Xx+4Iy
X Rez
|
BEA ' =x—1iy

Figure (4) The complex conjugate as a mirror image in the real axis.
»Find the complex conjugate of z = a + 2i + 3ib.
The complex number is written in the standard form
z =a+i(2+3b);
then, replacing i by —i, we obtain
z* = a—i(2+3b). 4

Nevertheless, given two complex numbers, z; and z», it is straightforward to show that the
complex conjugate of their sum (or difference) is equal to the sum (or difference) of their
complex conjugates, i.e. (z1 £2)* = 71 + z,* . Similarly, it may be shown that the complex
conjugate of the product (or quotient) of z; and z, is equal to the product (or quotient) of their
complex conjugates, i.e. (z122)* = z1* zo* and (z1/ 22)* = z21* | 2,

»Find the complex conjugate of the complex number z = w®*2%) where w = x +
5i.

In this case w itself contains real and imaginary components and so must be written out in
full, i.e.

7 = w3yt2ix — (x + 5i)3y+2ix_
Now we can replace each i by —i to obtain
7* = (.X _ 5l) (By—2ix).
It can be shown that the product zz* is real, as required. <«
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The following properties of the complex conjugate are easily proved and others may be
derived from them. If z = x + iy then

(z°) = Z o eiver e (A1)
z +z° =2Rez =2x ... ... (42)
z —z" =2ilmz =20y ....c........(43)
z x? —y? 2xy
= | ——— (=) e e (44
z* (xz +y2> +l(x2 +y2) (44)

1-4 Division

The division of two complex numbers z; and z, bears some similarity to their
multiplication. Writing the quotient in component form we obtain

2_1 _ xy +iyq (45)
2 —Xz Ty,

In order to separate the real and imaginary components of the quotient, we multiply both
numerator and denominator by the complex conjugate of the denominator. By definition, this
process will leave the denominator as a real quantity. Equation (45) gives

Z1 _ (x1 +iy;) (x; —iy,) _ (x1x2 +Y1Y2) +i (X291 — X1Y2)
Zy (xy +iy)(xy — iy,) xéz + 3’22 x22 + 3’22

Hence we have separated the quotient into real and imaginary components, as required.

In the special case where z, = z;* so that x, = x; and y, = —v1, the general result reduces to
(44).

3-2i
—144i

»Express z in the form x + iy, whenz =
Multiplying numerator and denominator by the complex conjugate of the denominator we
obtain
B -2D(-1-41)
LT I+ 4)(-1— 4D

—11-—-10i
— T 17
-11 10
=T~ i. 4



In analogy to (39), which describe the multiplication of two complex numbers, the
following relations apply to division:

al_ lal (46)

12| e ae

1-5 Modulus and argument:

The modulus of the complex number z is denoted by |z| and is defined as

|z| = VX% + Y2 e . (A7)

Hence the modulus of the complex number is the distance of the corresponding point from
the origin in the Argand diagram, as may be seen in figure (5). The argument of the complex
number z is denoted by arg z and is defined as:

arg z = tan‘lz}] cet ven vee e o (48)

It can be seen that arg z is the angle that the line joining the origin to z on the Argand
diagram makes with the positive x-axis.

Figure (5): The modulus and argument of a complex number.

The anticlockwise direction is taken to be positive by convention. The angle arg z is shown
in figure (5). Account must be taken of the signs of x and y individually in determining in
which quadrant arg z lies. Thus, for example, if x and y are both negative then arg z lies in the

range —m < arg z < —~ rather than in the first quadrant (0 < arg z <-), though both
cases give the same value for the ratio of y to x.

» Find the modulus and the argument of the complex number z = 2 — 3i.

The modulus is given by

|z| = 22+ (=3)2 = V13
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The argument is given by
-3

1

arg z = tan
g 2

The two angles whose tangents equal —1.5 are —0.9828 rad and 2.1588 rad. Since x =2 and
y =—3, z clearly lies in the fourth quadrant; therefore arg z=—0.9828 is the appropriate answelr.

|
2- Polar representation of complex numbers

Although considering a complex number as the sum of a real and an imaginary part is often
useful, sometimes the polar representation proves easier to manipulate. This makes use of the

complex exponential function, which is defined by
z2 z8
e’ =expz =1+z+ Enl + 3 +or e (49)

We also note that, using (49), by multiplying together the appropriate series we may show

that
ef1e? = g1tz . .. ..(50)

From (49), it immediately follows that for z = i0, 0 real,

0 _ ] 6?2 i63 64
e = 1 + l@ — 7 — ? +Z+ (51)
6> @4 g3 6>
0 _— - .. ; _ R
e’ = <1 T +4! >+l<9 3 + o] ) cer e e e e (D2)
and hence that
e = cosf +isinf ...........(53)

This last relationship is called Euler’s equation. It also follows from (53) that
e™ = cosn@ + isinnb
For all n. From Euler’s equation (53) and figure (6) we deduce that
re®® = r(cosf + isin®)
=x +iy.
Thus a complex number may be represented in the polar form
z=re . ... (54)



Figure (6): The polar representation of a complex number.

Referring again to figure (6), we can identify r with |z| and 6 with arg z. The simplicity of
the representation of the modulus and argument is one of the main reasons for using the polar
representation.

» Write z

—1 — i in the polar form.
Nowx = -1,y = —1

The modulus is:

r=lzl = J(-1)?+ (-1)2 = V2

The argment is:

0 = = tan-1 2 =27 5r 2250
=argz =titan 1 = 4 or
Its principle value is 6 = —%”

Hence z = (\/E —%’T) in the polar form. <

2-1 Multiplication and division in polar form:

Multiplication and division in polar form are particularly simple. The product of z; =
rierand z, = r,e'%is given by

Z, Z, = rye'f1r,e102

Zl Zz = Tlrzei(el-l-HZ) pan nes wes nes wes (55)
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The relations|z, z,| = |z,| |z,| and arg(z, z,) = arg z, + arg z, follow immediately.
An example of the multiplication of two complex numbers is shown in figure (7).

Imz

r ?.Zei'(91+02)

i0
rae'?
2 it

rpet

Re:z

Figure (7): The multiplication of two complex numbers. In this case r; and r; are both
greater than unity.

Division is equally simple in polar form; the quotient of z; and z; is given by:

io
2 _ne™ N oieey e (56)

Z, 1eifz 7,

The relations|z,/ z,| = |z,| / |z,| and arg(z,/z,) = arg z, —arg z, are again
immediately apparent. The division of two complex numbers in polar form is shown in figure

(8).

Imz

rreitl

Figure (8): The division of two complex numbers. As in the previous figure, rl and r2 are

both greater than unity.
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3- Roots of complex Numbers:

Consider now a point z = re”, lying on a circle centered at the origin with radius r. As 0 is
increased, z moves around the circle in the counterclockwise direction. In particular, when ¢
Is increased by 2z, we arrive at the original point; and the same is true when @ is decreased by
2n. It is, therefore, evident from Fig. (9) that two nonzero complex numbers:

z, = 1e% and z, = r,e'?2

z=rel

Figure (9) A point z = re”,
are equal if and only if
rn =1, and 6; = (0, + 2nm)
where K is any integer (k=0,£1,+2,...).

This observation, together with the expression z"=r"e”’, is useful in finding the nth roots
of any nonzero complex number z, = r,e'%, where n has one of the values n=2,3,... .The
method starts with the fact that an nth root of z, is a nonzero number z=r e such that z"=z,,
or

rei® = et .. ......(57)

According to the statement in italics just above, then,

n

r*=r1ry, and nl =60, + 2km ... ... ... ... ... (58)
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Sor= % where this radical denotes the unique positive nth root of the positive real
number ro, and

_ 0y +2km _90+2kn

= k=0,+1,%+2,...) . e e .o ... (59
- i (k=0,+1,%2,...) (59
Consequently, the complex numbers
(0o 2km
z="/1, exp [l (? + T)] (k=0,41,42,...) . e see ... ... (60)

We are able to see immediately from this exponential form of the roots that they all lie on
the circle |z| = ’(/r_o about the origin and are equally spaced every 2z/n radians, starting with
argument o/n.

» Let us find all four values of (—16)Y4, or all of the fourth roots of the number —16.

One need only write

z*=—-16
=4/(-16)2+0 =16
— tan-1 _
0, = tan 16 s
7% = rteit? =y eif
wr*=1y=16 and 40 =7+ 2kn
. k
= V16 exp [i (% + 771)] (k=10,1,2,3)
(s 1
zy = 2exp [i (Z)] = (\/—_+\/—_> V2(141)
M T (3m\1_ (1 .
Z, = 2exp [l (Z_I_E)] =2 exp [l (T)] = <T+T) V2(—1+1i)

2 = 2emp[i(G+m)] = 2em[i ()| =2(5-55) = VEa+ 0
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to=2exp i (2 0)] =2 e 1 ()] =235 ) =20 -0 <

Imz

Rez

P Let a denote any positive real number. In order to find the two square roots of a + i.

zZ=a+i
1o =+ (a)2 + 12 = (a? + 1)V/?

1
0, =tan"1—=
0 an . B

w72 = 12120 = 1 1%

cr?=1y=(a®?+1)Y? and 20 =B + 2kn

wz=+(a+ 1Y% exp [i ([2—3 + kﬂ)] (k=0,1)

z; = (a® + DY* exp [i (g)]

z, = (a®> + 1)* exp [i (§+ n)] = (a? +1)Y* exp [i (§+ n)] = —z,4
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Imz

21 Rez

(a® + DV
Ir=-171

H.W. Find the square roots of (a)2i ;(b)1 — +/3i and express them in Argand diagram.

4- de Moivre’s theorem:
We now derive an extremely important theorem. Since (e¢?)" = e? we have

(cos@ +isin@)" = cosnf +isinnd ... ... ........(61)

where the identity e’ =cosn@ + isinn® follows from the series definition of €™, This result
is called de Moivre’s theorem and is often used in the manipulation of complex numbers. The
theorem is valid for all n whether real, imaginary or complex.

There are numerous applications of de Moivre’s theorem but this section examines just
three: proofs of trigonometric identities; finding the nth roots of unity; and solving polynomial
equations with complex roots.

3.1 Trigonometric identities:

The use of de Moivre’s theorem in finding trigonometric identities is best illustrated by
example. We consider the expression of a multiple-angle function in terms of a polynomial in
the single-angle function, and its converse.

» Express sin30 and cos360 in terms of powers of cosO and sino.

Using de Moivre’s theorem,
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cos30 + isin30 = (cosO + isind)3
= (cos® @ — 3cos0sin?0) + i(3sinfcos? 8 — sin ).

We can equate the real and imaginary coefficients separately, i.e.

cos30 = cos® 0 — 3cosOsin?®6 = 4 cos® 6 — 3cosb
and

sin30 = 3sinfcos?* 0 —sin® 0 = 3sinf — 4 sin3 6. 4

This method can clearly be applied to finding power expansions of cos n6 and sin n6 for
any positive integer n.

The converse process uses the following properties of z = e%?,

1
z" + i 2cosnf ...... ... ......(62)
1
z" — — =2isinnf ... ........(63)
z

These equalities follow from simple applications of de Moivre’s theorem, i.e.

1
z" + = (cos@ + isinB)™ + (cosf + isinf)™"

= cosnf + isinnf + cos — nf + isin — né

= cosnf + isinnf + cosnB — isinn6

= 2 cosnf
and
1
2t - = (cos@ + isinB)™ — (cosf + isinf)™"
= cosnf + isinn@ — cos —n6l — isin — no
= cosn@ + isinnf — cosnf + isinnf
= 2i sinnf

In the particular case where n =1,

1
z+ E=e‘ +e 7 =2cos0 ..o e . ... (64)
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1

7= = el —e 0 =2isind ......ce e eu ... (65)

» Find an expression for cos® @ in terms of cos36 and cos6
Using (60)

)
cos —23Z Z

1/, 3 1
=§(Z +32+E+Z_3>

H 2
_8Z z3 8Z z

= —1 2 360 + —3 2cos6
* *
cos cos

cos3 0 = %cos39 + %cos@. <

3-2 Finding the nth roots of unity:

The equation z> = 1 has the familiar solutions z = +1. However, now that we have
introduced the concept of complex numbers we can solve the general equation z" =

Recalling the fundamental theorem of algebra, we know that the equation has n solutions. In
order to proceed we rewrite the equation as

z" = e?*kT . .........(66)
where k is any integer. Now taking the nth root of each side of the equation we find

z = et/ . ... ..(67)
Hence, the solutions of 2" =1 are

Zip.n =1, 20/ eiln=bm/n ... ... (68)

corresponding to the values 0,7,2,...,n— 1 for k. Larger integer values of k do not give new
solutions, since the roots already listed are simply cyclically repeated for k =n, n+1, n+2, etc.

» Find the solutions to the equation z3 =1.

By applying the above method we find
r=+124+0%2=1

, 0
argz = tan™ 1= 0
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z = [1,0]
z3 =[1,0]3 = [1,0]
7 = eZith/3

Hence the three solutions are z; = % =1, z, = €23, z3 = e*™3, We note that, as expected,
the next solution, for which k =3, gives z4 = % =1=z,, so that there are only three separate
solutions. <

Im:z

, L oom3
\\ / .
, i
I‘ /JZTE/3 3‘ RCZ

Figure (10) The solutions of z3 =1.

>

Not surprisingly, given that |z3| = |z|® from (39), all the roots of unity have unit modulus,
I.e. they all lie on a circle in the Argand diagram of unit radius. The three roots are shown in
figure (10).

3-3 Solving polynomial equations:

A third application of de Moivre’s theorem is to the solution of polynomial equations.
Complex equations in the form of a polynomial relationship must first be solved for z in a
similar fashion to the method for finding the roots of real polynomial equations. Then the
complex roots of z may be found.

» Solve the equation z°— z° + 4z* — 62° + 272 — 8z +8 = 0.
We first factorise to give
(-2 +4)(z—-1) = 0.

Hence z3 =2 or z2 = —4 or z = 1. The solutions to the quadratic equation are z = +2i; to find
the complex cube roots, we first write the equation in the form

ZS =2 = 282ik”,

where k is any integer. If we now take the cube root, we get
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7 =93¢ 2ikn/3.
To avoid the duplication of solutions, we use the fact that - 7 < arg z < m and find
Z1 = 21/3
3

. 1
— 21/3 2im/3 — 21/3 (__ _ )
Zy e > + 21

: 1 3
— 21/3p-2in/3 — 91/3 (____ )
Z3 e > 21

The complex numbers z3, z, and z3, together with z, =2i, zs = —2i and zs =1 are the solutions
to the original polynomial equation. As expected from the fundamental theorem of algebra,
we find that the total number of complex roots (six, in this case) is equal to the largest power
of z in the polynomial. <

5- Function of Complex Number:

Let S be a set of complex numbers. A function f defined on S is a rule that assigns to each
z in S a complex number w. The number w is called the value of f at z and is denoted by f
(z), so that w= f(z). The set S is called the domain of definition of f.

Suppose that u + iv is the value of a functionfatz = x + iy; that is,
u+iv=r[Ff(x+iy) .. ... (69)

Each of the real numbers u and v depends on the real variables x and y, and it follows that
f (z) can be expressed in terms of a pair of real-valued functions of the real variables x and

y:
F(2) = u(y) +ivEY) o (70)
If f(z) = z2, then
fx +iy) = (x +iy)* = x? — y? +i2xy.
Hence
2

u(x,y) = x* —y*> and v(x,y) = 2xy
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If the function v in equation (69) always has value zero, then the value of f is always real.
Thus f is a real-valued function of a complex variable.

If the polar coordinates r and & are used instead of x and y, then

u+iv=f(re?) .......(71)
wherew = u +ivandz = re®. Inthat case, we may write

Hence
f(2) = ul6)+iv(,0) ...cc....(72)

» Consider the function w = z? whenz = re®.
w = (re'®)? = r2e29 =12c0s26 +ir?sin26.
Hence
u(r,8) = r2cos26 and v(r,0) = r?sin264

» Write the following function f(z) in the forms f(z) = u(x,y) + iv(x,y)
(@) f(z)=2z3+z+1

1
(b)f(z) = s

If
z=x +1iy
then
@Qf@)=(x+iy)+x+iy)+1 = (x+iy)(x?— y2 +2ixy) +x +iy+1
= x3 —xy? + 2ix’y +ix’y — iy3 —2xy* +x+iy+1
= x3-3xy?+x+1+i(Bx%y— y3+y)
u(x,y) = x3—3xy*+x+land v(x,y) =3x*’y— y> +y

i—Gty) | —xH(-y) | xi(1my) | x2-(-y)? | x-(1-y)?  x2-(1-y)?

(b)f (Z) _ 1 1 x -x—-i(l-y) _ —-x—i(1-y) _ -X . (1-y)

H.W. Write the following function f(z) in the forms f(z) = u(x,y) + iv(x,y)
f(2) = (exp(z*))"
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then

—X
x2=(1-y)?

(1-y)

and U(X, y) = m

u(x,y) =

6- Analytic Function:
Suppose that f (z) = u(x,y) +iv(x,y) is analytic in the domain D and suppose that
the partial derivatives of the component functions u and v are continuous in D also.
Differentiation of the Cauchy—Riemann equations then gives:
Uy = Vy = Uy = Vyy = Uy = —Uyy = Uyy T Uy, = 01 (73)

Uy = Uy = Vyy = —Uyy = —Upyy = —Vyy = VUpy TV, = 0o (74)
Therefore, both the real and imaginary components of f are harmonic functions that satisfy
Laplace’s equation. Furthermore, comparing the two- dimensional gradients:

~du Ju _Jv  Odv

B u -_ l | -_ l -_ ,Al E U mEs mEEm EEE mEE mmm ; 5
V - | - - | = A x V 76

We find that lines of constant u (level curves) are orthogonal to lines of constant v anywhere
that f '(2) # 0.

» Verify that the following functions f(z)are analytic fuction.
@ f(@) = x* —y* + i2xy
b) f(2)=2y + ix

U, = 2Xx, vy, = 2X, Uy = 2, Vyy = 2, Vyx = 2, Uyy = -2
U, = —2y, Uy =2Y, Uy =0, Uy, =0, Uy, =0, vy, =0
Uy =V, and vy = —u,

Uy +Uyy =2—-2=0
Uy + Uy, =0+0=0

Hence, f(z) is analytic.
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u, =0, vy, =0, Uy = 0, Vyy =0, Vyx = 0, u
Uy = 2, U, =1, v, =0, Uyy = 0, Uyy = 0, Vyy = 0
then

Uy =V, and vy # —u,

Uyy T Uy, =0+0=0
Vyx T 0y, =0+0=0
Hence, f(z) is not analytic. <«

7- HARMONIC FUNCTIONS:

A real-valued function H of two real variables x and y is said to be harmonic in a given domain
of the xy plane if, throughout that domain, it has continuous partial derivatives of the first and
second order and satisfies the partial differential equation:

Hey 6, y)+ Hyyy (6,y) = 0o (77)

known as Laplace’s equation. Harmonic functions play an important role in applied mathematics.
For example, the temperatures T (x, y) in thin plates lying in the xy plane are often harmonic. A
function V(x, y) is harmonic when it denotes an electrostatic potential that varies only with x and
y in the interior of a region of three-dimensional space that is free of charges.

» Verify that the following functions u are harmonic:

@u(x,y) = 3x2y+2x? —y3 —2y?
(b)u(x,y) = In(x* + y?)

(@) u(x,y) = 3x%2y+2x? —y3 —2y?
U, = 6xy + 4x, u, = 3x* —3y* — 4y
Uyy = 6y + 4, Uyy = —6y — 4
From eq.(72), then
Uy + Uy, =6y +4+(—6y—4)=0
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Hence, u is harmonic.

() u(x,y) = In(x* +y?)

2x 2y
ux=x2_|_y2' uy=x2_|_y2
(x2+y3) «2—2xx2x 2(y*—x?) 2(x%2 —y?)
Uxx = (x2 + y2)2 = (x2 + y2)2’ Uyy = (x2 + y2)2
From eq.(72), then
2(y? —x?)  2(x*—y?)
Uyx + Uyy = (x2 + y2)2 + (x2 + y2)2 =0

Hence, u is harmonic. <

» Verify that the function T (x,y) = e~ sin x is harmonic in any domain of the xy plane.

T, = e Y cos x, T, = —e Vsinx

T, = —eVsinx, T,, =eVsinx
From eq.(72), then

Tex +Tyy =—eVsinx+e Ysinx =0

Hence, T is harmonic. 4

Theorem. If a function f (z) = u(x,y) + iv(x,y) is analytic in a domain D, then its
component functions u and v are harmonic in D.

H.W. Verify that the function T (x,y) = e ™ sin x —ie™ cos x is harmonic in any domain
of the xy plane.

We now illustrate one method of obtaining a harmonic conjugate of a given harmonic function.
The function is:

u(x,y) = y> —3x%y

is readily seen to be harmonic throughout the entire xy plane. Since a harmonic conjugate
v(x,y) is related to u(x, y) by means of the Cauchy — Riemaan equations
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Uy = Uy, Uy = =y
The first of these equations tells us that
vy (x,y) = —bxy
Holding x fixed and integrating each side here with respect to y, we find that
v(x,y) = =3xy* + ¢(x)
where ¢ is, at present an arbitray function of x. Using the second of equations
3y? —3x? =3y* - ¢(x)
d(x) = 3x?
Thus
d(x)=x3+C

Where C is an arbitrary real number. According to above equation then, the function:

v(x,y) = =3xy*+x3+C

8- Complex integrals:

Corresponding to integration with respect to a real variable, it is possible to define
integration with respect to a complex variable between two complex limits. If a complex
function f(z) is single-valued and continuous in some region R in the complex plane, then
we can define the complex integral of f(z) between two points A and B along some curve
in R; its value will depend, in general, upon the path taken between A and B.

Let a particular path C be described by a continuous (real) parameter t (o <t < )
that gives successive positions on C by means of the equations

x =x(t), vy =y&) .we.....(78)

with t = a and t = B corresponding to the points A and B, respectively. Then the integral
along path C of a continuous function f(z) is written:

ff(z) Az ..o e e . (79)

and can be given explicitly as a sum of real integrals as follows:
Jf(z)dz = f(u + iv)(dx + idy) = judx — jvdy + ifudy + iJvdx

B dx B dy (F ay (P oax
=f u— dt — j v—dt+1f u— dt+lj v—dt ............(80)
g dt . dt . dt . dt
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» Evaluate the complex integral of f(z) = z ! along the circle |z| = R, starting and finishing at z
=R.

The path C; is parameterized as follows:
z(t)= Rcost + iRsint 0<t<2m

whilst f(z) is given by:

_ 1 _x =y
1@ x4+ iy x2+4 y?
Thus the real and imaginary parts of f(z) are:
X Rcost -y —R sint
u=x2+y2= R? and v=x2+y2= R?

Hence, using expression (79)

1 TR cos't , [?"—Rsint (?"Rcost
]—dz=J >— (—R sint) dt—l] ———(Rcost) dt+lj s— (R cost) dt
z 0 R 0 R 0 R

2T _Rsint _
+ J ——— (—Rsint) dt
0 R

f§d2=0+0+in+in=i2n4

With a bit of experience, the reader may be able to evaluate integrals directly without having to
write them as four separate real integrals. In the present case,

1 T _Rsint + iRcost =3 _
j—dz=] dt=f i dt =2mi
z 0 0

Rcost + iRsint

»Evaluate the complex integral of f(z) = Re zalongthepaths 0 <t <2mand0 <t <m
2T
jRez dz = f Rcost(—R sint+ iR cost) dt = imR?
0

[Rezdz = fonR cost(—Rsint+ iR cost) dt = %inR24
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» Evaluate the following integral:

2
f (t? +0)%dt
1

2
2002 0 1V20r = (A(t4 4202 + i)t = L4 2| =3t 14 226 14,
J{ (&% + D)2de = [ (t* + 2it +i%)dt = =+ 2i- t1—5+3l 1=2+—id

H.W. Prove the following integral:

N -
[

/4 .
j e 2tdt =
0

9- Cauchy’s theorem and integral formula

Cauchy’s theorem states that if f(z) is an analytic function, and f (z) is continuous at each point
within and on a closed contour C, then

?gf(z) dz=10..........(81)

We will need the two-dimensional form of the divergence theorem, known as Green’s theorem
in a plane. This says that if p and g are two functions with continuous first derivatives within and
on a closed contour C (bounding a domain R) in the xy-plane, then

Jf dx dy = 3§('p dy —q dx) ... ....(82)
With f(z) = u + ivanddz = dx + idy, this can be applied to:
I:jgf(z)dzzjg(udx—vdy)+if(vdx+udy)

To gives:

ﬂ <d( u) d( v))d dy+ i ﬂ <d( v)+d§u)>d ey (83)

Now, recalling that f(z) is analytic and therefore that the Cauchy—Riemann relations (73,74) apply,
we see that each integrand is identically zero and thus I is also zero; this proves Cauchy’s theorem.

Another very important theorem in the theory of complex variables is Cauchy’s integral formula,
which states that if f(z) is analytic within and on a closed contour C and z, is a point within C
then:
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f) = — 6 LD

2l ) z — Zg

This formula is saying that the value of an analytic function anywhere inside a closed contour is
uniquely determined by its values on the contour. We then use the fact that any point z on vy is
given by z = zo + p exp i6 (and so dz = ip exp i6 d6). Thus the value of the integral around vy is
given by:

I =

+ pexpif
f(2) dzzjéf(ZO p pl)ipexpi@d@

Z — Z p exp i6

[=i %f(zo + pexpif) d6

If the radius of the circle y is now shrunk to zero, i.e. p — 0, then I — 2xif(z0). An extension to Cauchy’s
integral formula can be made, yielding an integral expression for f (z):

f(zo) = — /(2) dz ..oo ... ... (85)

2mi J (z — zp)?

» Prove Cauchy’s integral formula for f (z) given in (84).

f(zo +h) — f(z)
h

f(zo) = fllll%

\ _ 1 [(f(2) 1 1
f(z0) =r111>no[2nijé h (Z—Zo—h_Z—ZO> dZ]

f(z0) = lim[ - 3£(z—zo /@) dz]

h—0 | 27Ti —h)(z — z,)

1 f@
fzo) = 27Ti3€ (z — zp)? dz
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which establishes result (84) «

Further, it may be proved by induction that the nth derivative of f(z) is also given by a Cauchy
integral,
n! f(2)

fn(ZO) = i (Z — Zo)n+1 AZ wevoee ies e e (86)

P Let C denote the positively oriented boundary of the square whose sudes lie along the
lines x = +2 and y = 12. Evaluate each of these integrals.

(@ [Z=

z+1

(b) f coshz dz

724z

(C) J«tan(z7{2) dz

(@) By Cauchy Integral Theorem

zdz

m = Zﬂlf(—l) = —2mi 4
(b) By Cauchy Integral Theorem

jCOShZ p _j cosh z p
224z 07 z(z+1) z

f(z0) cosh z, p cosh z,
ZO - an
(ZO + 1) Zo=0 Zo Zg=—1
jCOShZ o coshz ot
224z 7Tl(z+1) ZO=0_ m
coshz _coshz ,
j > dz = 2mi = —2mi cosh(—1)
z°+z

20:—1

Hence

f coshz

Z247

dz = 2mi(1 — cosh(—1)) <

tan(z/2) . . T\ .
(c) [—== dz=2mitan (Z) = 2mi <«
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» Compute the integral of the following for functions along the curves C1={|z| = 1}
and C2={|z — 2| = 1}, both oriented counterclockwise:

(@)

1

2z—2z2
sinhz
(b) (2z-2z2)?
(@)
1 e o N—1
fZZ—zde_f 2 dz =2mi(2 —0)™" = mi 4
(b)
. _ o ,
Sz = [ dz =2 (b )2 - 27| =3

sinz

(z+1)7

Where C is the circle of radius 5, center 0, positively oriented.

dz

»Evaluate [

Recall the extension of the Cauchy integral formula:

f(z)
~ 2mi jé (z — )"+1

Considering the function f(z) = sin z, which is analytic on C, we have

sin z 6! sin z

fo=D = Zmyg (z— (- 1))6+1 dz T 2mi) z+ 1) dz

Since f®(z) = — sinz, then

sinz _ 2mi 2 sin(1) |
Gty 2= g sinth) =

Let C be the circle |z| = 1 oriented counter -clockwise. 4
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10- Taylor and Laurent series:

We may establish Taylor’s theorem for functions of a complex variable. If f(z) is analytic
inside and on a circle C of radius R centered on the point z = z;, and z is a point inside C, then

f(z2) = Zan(z 2™ o (BT)

The Taylor expansion is valid inside the region of analyticity and, for any particular z,, can be
shown to be unique. To prove Taylor’s theorem (86), we note that, since f(z) is analytic inside
and on C, we may use Cauchy’s formula to write f(z) as

1 f()
2ni ) ( — z
where £ lies on C. Now we may expand the factor (£ — z) ~! as a geometric series in (z — zo)/(& —
Zo)

f(z) = TN ¢: 1)

oo

(122(—120 zc:ipn

n=0

@ 7 S ()

So (87) becomes

@)
f&) = 5 nZ(z— )" § ey

2mi f( 2
f(z) = mz( mif () 9

on
where we have used Cauchy’s integral formula (85) for the derivatives of f(z). Cancelling the

factors of 2mi, we thus establish the result (87) with a,, = %

f°(z) =f(2z) and 0l=1
The Taylor series is:
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f (1!20) (z — ZO)+f g!Zo)

f(2)=f(zy) + (z — 20)*+ vvevveeee. (|2 — 2ol <Ry)

Taylor theorem when z, = 0, in which case f is assumed to be analytic throughout a disk |z | <
R, become a Macalurin series

o0 n 0
f(z) = Z f (' ) m 1Z] <Ry eoe s e (90)

n

»Since the function f(z) = e” is entire, It has a Maclaurin series representation which is
valid for all z

Here
f*(z) =e%[0,1,2, ......... ] and f*(0) =11[0,1,2, ... ... ... ]
It follows that

er= ) — (Iz] < o)

=0 |

n
Note that if z = x + i0, expansion becomes

oo

zZ xn

=2 (Foo <l <o)
n=0

If replace z by 3z on each side of equation and multiply through the resulting equation by z2
(e 0] 3n
ZZeSZ: z _Zn+2 (|z|<oo)
n!
n=0

Finally, if we replace n by n-2 here, we have

2,3z _ Voo 3 n

» Find the Maclaurin series for the function f(z) = sinz
One can use expansion and the definition:
eiz _ e—iz
SInz = ¥

To give the details. We refer to expansion and write
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1 @t zz)“ "
smz=z[z o Z 1-(1)" (Iz] < )
n=0

Ifniseven1 — (—1)" = 0,and so we can replace nby 2n + 1
1 — 2n+1,,2n+1

: — 1— (-1 2n+1 -

sin z ZiZ) (1-(-1) ) Znt Dl (lz] < )
n=

(_1)11 Zz2n+1

Si“FE anr . (zl<e

n=0

» Another Maclaurin series representation is:

1
—=> 2 (2 <D

Since the derivative of the function f(z)=1/(1-z), which fails to be analytic at z=1, are

|

In particular f*(0) =n! (n=0,1,2,...). Note that expansion gives us the sum of an infinite
geometric series, where z is the common ratio of adjacent terms:

oo n 0

z 1o, =i

n=0

fh(z) = (n=0,12..)

1
1+Z+ZZ+Z3+"':E (lz| <1)

If we substitute —z for z in equation above and its condition of validity, and note that |z]| <1

when |—z| < 1, we see that:
=) o
n=0
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If , on the other hand, we replace the variable z in equation above by 1-z, we have the Taylor
series representation:

1 (e 0]
=Y D"GE-D" (z-1] <D
n=0
This condition of validity follows from the one associated with expansion above since |1 — z|
listhesameas |z — 1| < 1.

H.W. Prove the following series:

it _1\n ,2n
cosz=z % (lz ]| < =)

P! (2n)!
and
it 2n+1
sinhz=; Gy (21<)

» Find the Taylor series of the following functions and their radius of convergence:

(a) z sinh(z?) at z=0
(b) e? at z = 2

(a) z sinh(z?)

. zZ
Sincee? = Y.,

n!

e’ — g2’
z sinh(z?) =z (T)
z sinh(z?%) = ;(Z z 1)” >
z sinh(z?) = (2(1 —(=D)™) 2n+1>

If n=0,2,4.6,.... z sinh(z?) =0
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Or n=1,3,5,7,.... z sinh(z%) = Y13

~n=2m+1

4m+3

z sinh(z?) = Z amT D!

Since f(2) is entire, the radius of convergence is co.
(b) e*

Let z=w+2 and w=z-2

V4

=e =e~e

® n *® n
w2 2 wzezz Lzez (z—-2)
n=0 n=0 '
Since f(z2) is entire, the radius of convergence is co. <«

If a function f fails to be analytic at a point z,, one cannot apply Taylor’s theorem at that point. It
Is often possible, however, to find a series representation for f(z) involving both positive and
negative powers of z-z,. We now present the theory of such representation, and we begin with
Laurent’s theorem.

Suppose that a function f(z) is analytic throughout an annular domain R; < |z — z,| < R,,
centered on the point zy, and let C denote any positively oriented simple closed contour around
and lying in the domain. Then each point in the domain, f(z) has the series representation,

f(z) = Z a,(z — zg)" + zm o (91) (R, < |2 =24 < Ry
n=0 n=1
f(2) B
a, = o jé =z dz....c......(92) (n=01,2,...)

1 f(z)
b, = o fﬁ 0 dz ............(93) (n=1,2,...)

7 — ZO)—n+1

Note how replacing n by —n in the second series in representation (91) enables us to write that

series as:
Z (Z — ZO) n
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where

bon= 5 jﬁ e f(j))nﬂ e (98) (= —1,-2,..)
Thus
f(z2) = Z b (z — zg)" + Zan(z 2" 4 n(95) (Ry < |z—12,] <R,
If

B {b_n when n < —1}
“n = a, when n=0

This becomes

(0]

fz) = z o (Z = Zg)" o (96)  (Ry < |2 — 24| < Ry)
where
f(2) B
Cp = o f -z )n+1 i (97) (n=0,41,42,...)

The representation of f(z) is called a Laurent series. Observe that the integrand in expression (93)
can be written f(z) (z — z,)" 1. Thus it is clear that when f is actually analytic throughout the
disk |z — z,| < R,, this integrand is too. Hence all of the coefficient b,, are zero; and

1 f(z) _ [(z)

dz =
2ni J (z — z, )"t z n!

n=012..)

Expansion (90) reduces to a Taylor series about z,.

11- A singular point:

A singular point of a complex function f(z) is any point in the Argand diagram at which
f(z) fails to be analytic. If f(z) has a singular point at z = z, but is analytic at all points
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in some neighbourhood containing z, but no other singularities, then z = z is called an
isolated singularity.
The most important type of isolated singularity is the pole. If f(z) has the form

92
f(z) = = zn ..(98)
where n is a positive integer, g(z) is analytic at all points in some neighbourhood
containing z = z, and g(z) # 0, then f(z) has a pole of order n at z = z,. An

alternative (though equivalent) definition is that:
Zli_)n;g[(z —z)"f(2)] = a. e e .. (99)

where a is a finite, non-zero complex number. We note that if the above limit is equal
to zero, then z = z, is a pole of order less than n, or f(z) is analytic there; if the limit
Is infinite then the pole is of an order greater than n. It may also be shown that if f(z)
hasapoleatz = z,, then |f(z)|— as z — zo from any direction in the Argand diagram.

» Find the singularities of the functions:

Of(2) =— — —, (ii) f(z) = tanhz.

1+z

(i)  If we write f(z) as:
_ 1 1 _ 27
f(z)_l—z 1+z (1-200+2)
we see immediately from either (89) or (90) that f(z) has poles of order 1 (or simple
poles)atz=1and z=—1.

(i) Inthis case we write:

f(z) = tanhz = sinhz _ expz — exp(—2)

coshz  expz + exp(—z)
Thus f(z) has a singularity when exp z = — exp(—z) or, equivalently, when
exp z = exp[i(2n + 1)) exp(—2z)
where n is any integer. Equating the arguments of the exponentials we find z =
(n + %)ni, for integer n

Furthermore, we have

1. ...
[z— (n + E)HL]SlnhZ _,

lim

z—>(n+%)m’ coshz

Therefore, from (90), each singularity is a simple pole. <
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» Show that f(z) = (sin z)/z has a removable singularity at z = 0.

It is clear that f(z) takes the indeterminate form 0/0 at z = 0. However, by expanding

sin z as a power series in z, we find
3 5 2 4

Thus ling f(z) = 1 independently of the way in which z — 0, and so f(z) has a
removable singularity at z = 0. «

Zeros are classified in a similar way to poles, in that if

f(2)=(z = 2z0)" g9(2),
where n is a positive integer and g(z) # 0, then z = z, is called a zero of order n of
f(z). If n =1 then z = z is called a simple zero. It may further be shown that if z = z,
Is a zero of order n of f(z) then it is also a pole of order n of the function 1/f(z).

12- The residue theorm:

Having seen from Cauchy’s theorem that the value of an integral round a closed
contour C is zero if the integrand is analytic inside the contour, it is natural to ask what
value it takes when the integrand is not analytic inside C. The answer to this is
contained in the residue theorem, which we now discuss.

Suppose the function f(z) has a pole of order m at the point z = zy, and so can be written
as a Laurent series about z; of the form

0

f) = ) ez = 2"

n=—-m

Now consider the integral | of f(z) around a closed contour C that encloses z = zo, but
no other singular points. Using Cauchy’s theorem, this integral has the same value as
the integral around a circle y of radius p centred on z = z,, since f(z) is analytic in the
region between C and y. On the circle we have z = zo + p exp i0 (and dz = ip exp i0
df), and so

I=3£f(z)dz

I = Z Cn 3§(z — zy)" dz
n=-m
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oo

2T
[ = z an i prHl it DE g
n=-m 0

For every term in the series withn # —1, we have
27
J ipn+1 el+1)0 4g —
0

but for then = —1 term we obtain
2T
f ido = 2mi
0

Therefore only the term in (z — zo) ! contributes to the value of the integral around y
(and therefore C), and | takes the value

I = ?éf(z) dz = 2mic_q e v vev o ... (100)

Thus the integral around any closed contour containing a single pole of general order
m (or, by extension, an essential singularity) is equal to 2zi times the residue of f(z) at
Z=1p.

If we extend the above argument to the case where f(z) is continuous within and on a
closed contour C and analytic, except for a finite number of poles, within C, then we
arrive at the residue theorem

%]Tz)dzzzZniEZIQ.""“"".m(101)
J
where); ; R; is the sum of the residues of f(z) at its poles within C.

z
z2+1

» Letf(z) =

Find the poles and residues of f.

Using partial fractions we write

Z
1@ = e —o
The poles are at z = +i. We compute the residues at each pole:
Atz =1
(z) = ! ! + thi lytic at i
f(z =2 Z=D somthing analytic at i

Therefore the pole is simple and Res(f,i) = 1/2.
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Atz = —i

1
f(z) = 2 Z+D + somthing analytic at — i
Therefore the pole is simple and Res(f, —i) = 1/2. 4
2+z+z2 . .
» Letf(z) = S Yty Show all the poles are simple and compute their
residues.

The poles are at z = 2,3,4,5. They are all isolated. We’ll look at z=2 the others are
similar. Multiplying by z — 2 we get:

9(2) = (z-2)f(2) =

This is analyticat z = 2 and

2+ z+ z?
(z-3)(z—4)(z—-5)

()_8_ 4
g ="g= 73

So the pole is simple and Res(f,2) = — §<
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